OPENCOURSEWARE

SEE 3223 Microprocessors

6: Flow Control

Muhammad Mun’im Ahmad Zabidi (munim@utm.my)

Innovative.Entrepreneurial.Global




ocw.utm.my

Module 6: Program Control

* Contents
— Unconditional Branch & Jump
— Program Counter Relative Addressing
— Compare Instructions
— Conditional Branch Instructions
— Implementing Basic Programming Constructs
— Address Registers
— Indexed Addressing

y



ocw.utm.my

Review: Fetch - Execute Cycle

The CPU operates in a two-phase fetch-execute mode.

— In the first phase
* theinstruction is read from memory
* The instruction copied into the instruction register, IR
* The program counter is advanced to point to the next instruction

— In the second phase
* The instruction in IR is decoded
 The instruction is executed

68000 has a variable instruction size (min 2 bytes, max 10 bytes).

— The value in the program counter is increased by 2 in fetch phase
— PCisincreased by 0 to 8 in execute phase

The order of instruction processing is sequential order (one by one).
Sometimes, you want to execute instruction in a different order.
This is done by putting a different address into the PC.

©

UTM

I FIOLON A



ocw.utm.my @ UTM

Flow Control

Flow control - Ability to choose an instruction other than the
following instruction

ldea: just modify PC like any other register

If it worked, it would powerful (and dangerous!)

Instead, we have special instructions with limited abilities to modify
the PC.



ocw.utm.my @ UTM

I FIOLON A

Flow Control Instructions
T TN | T T

BRA (branch always) implements an

Carry clear
unconditional branch, relative to the PC.
The offset is expressed as an 8- or 16-bit CS Carry set C=1
signed integer. If the destination is outside NE Not equal 7=0
of a 16-bit signed integer, BRA cannot be
used. EQ Equal Z=1
JMP JMP (jump) is similar to BRA. The only PL Plus N=0
difference is that BRA uses only relative : -
addresing, whereas JMP has more MI Minus N=1
addressing modes, inluding absolute vVC Overflow clear V=0
address. VS Overflow set V=1
Bcc Bcc (branch on condition code) is used GE Greater or equal NV + NV’ = 0
whenever program execution must follow
one of two paths depending on a condition. GT Greater than NVZ + (NVZ) =1
The condition is specified by the mnemonic LE Less or equal Z+(N'V+NV’) = 1
cc. The offset is expressed as an 8- or 16-
bit signed integer. If the destination is LT Less than NV + NV’ =1
outside of a 16-bit signed integer, Bcc HS Higher or same C=0
cannot be used.
: LO Lower C=1
JSR JSR and BSR branches to a subroutine.
BSR The PC is saved on the stack before HI Higher CZ =1
RTS loading the PC with the new value. RTS is LS Lawiar oF &2 C + 7=1

used to return from the subroutine by
restoring the PC from the stack.



ocw.utm.my @ UTM

BRA Instruction

The BRA (for branch) instruction allows us to modify the PC by essentially adding
to it or subtracting from it.

A silly little example:

00001000 1 ORG $1000
00001000 5280 2 START ADDQ.L #1, DO
00001002 60FC 3 BRA START
00001004 4 END

What does this code do? It infinitely loops, continually adding 1 to DO. Not very
useful, but very simple.

The machine language for BRA contains the offset SFC which says we want to

subtract 4 from the PC, or add -4 (the reason it’ s 4 rather than 2 is that the PC
starts at PC + 2):

0110 0000 1111 1100
$ 6 0 F C



ocw.utm.my @ UTM

Branch Offset

Relative address is the address difference from current instruction
to the instruction it branches to.

Two versions:
— short branch - 8 bit displacement dg
— long branch - 16 bit displacement d,,
dg or d, isin 2’ s complement.

— dg allows branching from -128 to 126
— d, allows branching from -32768 to 32766

Displacements are computed by assembler.
— Dependent on the size of the jump

— For forward references, assembler normally choose long branches.
— Short branches can be forced by using mnemonic



ocw.utm.my Q:§[IIL4

ey OO L

A Long Branch

When the branch target cannot be reached using an 8-bit displacement, the long
format is used.

Machine code of short branch:
— 0110 0000 PPPP PPPP

MaChine co Address where to branch
— 0110 C

PPPP P / Current PC location

SOFFE=52000-51002

oooo1oo0on 1 ORG 1000
oooolio000 6000 OFFE £ BEA HEW_PC
ooonE oo 3 ORE 2000
pooozo0n  203C 00000000 4« NEW_PC MOVE.L #0,D0
00002006 4ETS 3 RT3

ooooEood B ENRDy



ocw.utm.my @ UTM

JMP Instruction

The JMP (for jump) instruction allows us to modify the PC in more powerful
ways.

JMP allows you to set the PC to the value of an address register and also to set it
directly to a constant value.

As an example, let’s say that we wanted to jump to the location stored in AQ.
We can do that with:

4EDO JMP (AOQ)

JMP loads the effective address of its operand into the PC.
Let’s look at the machine code:

0100 1110 11 010 o000 ===> (0100 1110 1101 0000
$ 4 E D 0

Bits 5:0 = 010 000 means address register indirect. Fairly straightforward. Note
that address register indirect with displacement (and index) also work.



ocw.utm.my @ QTM

JMP Instruction

* Let’s also assemble an example with absolute addressing.
4EF8 1000 IMP $1000

0100 1110 11 111 o000 ===> (0100 1110 1111 1000
$ 4 E F 8
$ 1 0 0 0

* Bits 5:0 =111 000 means absolute short or (XXX) .W. Again, pretty
simple.

e The assembler gave absolute short because I’ ve specified an
address that was only 16 bits.

* Using absolute long or (XXX) . L works fine too.



ocw.utm.my @ QTM

Why Conditional Instructions?

While it is useful to be able to jump around in your code using BRA
and JMP, they certainly don’ t solve all problems.

In order to write any real program, you need to be able to branch
conditionally based on the current state of the program.

The “conditions” are stored in the Conditions Codes Register (CCR),
so we will review it.

Conditional Branch instructions examine bits in CCR and chose
between two courses of action.
CCR bits are either:

— Updated after certain instruction have been executed, or
— Explicitly updated (bit test, compare, or test instructions)



ocw.utm.my ®©UTM

Review of CCR

* System Byte
— Only modifiable is supervisor mode
— Details in later modules

* User Byte: CCR

— For user-level programs
— Behavior depends on instruction

Set if a signed overflow occurs.
Cleared otherwise.

/7 6 S5 4 3 2 1 0 N Set if the result is negative.

NI ZIVIC Cleared otherwise.

6-12

16-bit status register
15 8 7 0

Systems information CCR




ocw.utm.my @ QTM

Instructions That Modify CCR

We have seen that most arithmetic/logic instructions modify CCR
to report on the results of the ALU operation.

Examples of how other instructions affect the condition codes.
— MOVE: N/Z get set based on the result of the MOVE; V/C are always 0.
— CLR:N/V/C always 0; Z always 1.

— MOVEA: No affect on condition codes.

One interesting instruction to look at is CMP.

— CMP sets condition codes just like SUB, except that it doesn’ t actually store
the result of the subtraction. Having the condition codes set allows us to
compare the relative sizes of the two operands. As we will see in just a
second when we look at BCC, this is quite useful for conditional branching.

Other instructions related to CMP are TST and BTST (later...)



ocw.utm.my @ UTM

I FIOLON A

Compare Instructions

e All compare instructions subtract the source operand, usually the contents of one register
(or memory location) from the contents of the destination operand, usually another

register (or memory location) in order to set the CCR (except the X-bit). The results of the
subtraction are discarded.

e CMP or another compare instruction is usually followed immediately by a conditional

branch (e.g., BEQ branch on zero, BNE branch on zero, BGT branch if greater than, BLT
branch if less than, etc).

Instruction Source Operand Destination Operand
CMP Any Must be data register
CMPA Any Must be address register
CMPI An immediate value Any except address register
CMPM Autoincrement Autoincrement




ocw.utm.my @ HTM

Conditional Branch Instructions

Identified by the mnemonic B_. where "cc" represents the
condition to be checked.

General form:

B Address_Label

CccC

If the condition is true, then control will branch to
"Address_Label".

No effect on condition codes



ocw.utm.my

©

Conditional Branch on Single Flags

Mnemonic Instruction Flags
BCC Branch on carry clear, branch on higher or same C=0
BCS Branch on carry set, branch on lower C=1
BVC Branch on overflow clear V=0
BVS Branch on overflow set V=1
BNE Branch on not equal Z=0
BEQ Branch on equal Z=1
BPL Branch on plus N=0
BMI Branch on minus N=1

UTM

I FIOLON A



ocw.utm.my @ UTM

Understanding Branch Instructions

The mnemonics for the branch instructions assume that you are following a SUB or a CMP
instruction:

— BEQ (branch when equal) will be taken when Z=1

CMP DO,D1 ; when does z=17
BEQ SKIP ; when D3 and D4 are equal!
(something)

SKIP (something)

You can also think of B_. as comparing the result of the last operation to zero:
— BNE (branch when not equal) will be taken when Z=0

MOVE #5,D0
MOVE #1,D1
LOOP ADD D1,D1
SUB #1,D0 ; when does z=07
BNE LOOP ; as long as DO 1s not zero



ocw.utm.my

Conditional Branches after Signed
Arithmetic

Mnemonic | Instruction Branch Taken If
BGE Branch on greater or equal (N=1andV=1)or(N=0and V =0)
(N=1andV=1andZ=0)or
BGT Branch on greater than
9 (N=0and V=0andZ=0)
Z=1or(N=1andV=0)or
BLE B honl I
ranch on less or equa (N=0andV=1)
BLT Branch on less than (N=1andV=0)or(N=0and V =1)




ocw.utm.my

Arithmetic

. @UIM
Conditional Branches after Unsigned

Mnemonic | Instruction Branch Taken If
BHS Branch on higher or same C=0

BLO Branch on lower C=1

BHI Branch on higher C=0andZ=0

BLS Branch on lower or same C=1andZ=1




ocw.utm.my @ HTM

Structured Programming

* We can use B_. to emulate the more structured
flow control techniques present in languages like C

— if-then

— if-then-else
— while

— do-while

— for



ocw.utm.my UTM

if-then

* Probably the simplest example is if. An example should suffice, as this is a
straightforward concept:

if (n == 1) { CMP #1,N

m= 3; BNE NotE(Q

} MOVE #3,M
@NotEq

* The most efficient way to code this is to skip the code block {...} if the condition
is not true

e Remember: test for the opposite of the if condition



if-then-else

e The if-then-else construct has an alternative statement that is
executed when the condition is false.

if (n == 1) { CMP #1,N

o= 3 BNE NOtEq

1 else { MOVE #3,M

m= 2 BRA Done

I NOTE(Q MOVE.L #2, M
Done

* If the test in the if statement is more complex, a few more
instruction might be needed.



ocw.utm.my @ UTM

ey OO LA

while

e “while” isn’ t a whole lot more difficult than “if".

MOVE M, DO

while (m > n) { TOop CMP N, DO
N++; BLE Ex1t

}
BRA Top

* One interesting note here: we did need to move M into DO. CMP can’ t compare
two memory locations directly.

e This is an example of a “pre-test” loop. The condition is tested before going into
loop.



ocw.utm.my @ UTM

do-while

« “do while” is a looping structure that doesn’t compute the test before entering
the loop. It runs the loop once and then computes the test.

o i MOVE  M,DO
N++;

} while (m > n); CmMP N, DO

BGT Top

« Notice that the code produced by the “do while” is shorter (and faster) than the
“while” loop. However, you don’t get something for nothing. Often times, you
really do want to do the test at the beginning of the loop. .



ocw.utm.my

for

* Just to finish up all the
in C, we might as well s

although it’ s really nothing new:

CLR

C e MOVE

n = 0; Top CMP
for (m = 1; m <= 10; m++) { BGT
n += m; MOVE

} ADD
- ADD
BRA

EXit

ooping structures present
how the “for” loop,

#1,M
#10,M
Exit
M, DO
DO, N
#1,M
Top



ey OO

ocw.utm.my ngljjibi

Fixed loops

 If all you want is to repeat a loop 5 times (or any fixed count), don’ t use the
“for” loop. In assembly it’ s more efficient to use a down counter.

Top

//////’

CLR N

n— 0; MOVE #5,D1
for (& =0: m<=4; m+) { EXit Top MOVE  M,DO0

ADD DO, N
SUB #1,M
BNE Top

N += m;

}

\ 4

EXit

* Tip: make sure you count down to 0, and use a register for the counter!



ocw.utm.my @ UTM

I FIOLON A

Ex 1: Character Translation

000 001 010
0000 [NUL DLC SP
0001 [SOH DC1 !
0010 [ STX DC2 "
0011 |[ETX DC3 #
0100 [EOT DC4 $
0101 [ENQ NAK %
0110 [ ACK SYN &
(
)
*
+

11 100 101 110 111

How is a hex digit printed as a
character?

Algorithm:

Char Code = Hex Val + 0x30;
if (Char_Code > 0x39) ({
Char_Code = Char_Code + 7

}

0111 | BEL ETB
1000 | BS CAN
1001 | HT EM
1010 | LF SUB
1011 | VT ESC

1100 | FF FS , <
1101 | CR GS - =
1110 | SO RS . >
1111 | SI US / ?

P
Q
R
S
T
U
\"%
\\
X
Y
Z
[

\ Try verifying for ‘7" and ‘E’
]

A

o B 5 —pE e e g HHh D OO O
P!~ ~~N<MXg<e *unrog

EL




EXIT
0111
0011 | 0000
0011 | 0111

~ oowutmmy
Convert a Hex. to ASCII

MOVE . B
ADDI.B
CMPI.B
BLS.S

ADDQ.B
MOVE .B

Hex Val,DO
#$30,D0
#$39,D0

EXIT

#$07,D0
DO,Char Code

E 1110
+ | 0011 | 0000
+ | 0000 | 0111
'E' 0100 | 0101

6-28



- ocwutmmy ©UIM
Ex 2: Sum Using A Loop

 Performthesum 1+2+3+..+10 byusinga

loop, i.e.
total = 0;
for (counter = 1; counter <= 10; counter++)

total = total + counter;

6-29




ocw.utm.my Q:§IJJFL4

Ex 3a: Bit Counting

* This version of the program uses bit operations

* DO contains the byte of data whose bits we want to count
* D1 contains a bit counter which will range from 0 to 8
* D2 contains a loop counter which counts down from 8 to 0

ORG $1000

MOVE.B DATA,DO Get the data

CLR D1 Clear bit counter

MOVE #7,D2 Set loop counter to 7
Next BTST D2,D0 Test the bit specified by D1

BEQ Zero If the bit is 0, skip

ADD #1,D1 Else, increment bit counter
Zero SUB.B #1,D2 Decrement loop counter

BCC Next Check another bit

MOVE.B D1,BITCT Save bit count
STOP #$2700

DATA DC.B %$10101111

BITCT DS.B 1
END $1000



ocw.utm.my QZ}{[IJiLd

Ex 3b: Bit Counting

* This version of the program uses rotate operations

* DO contains the byte of data whose bits we want to count
* D1 contains a bit counter which will range from 0 to 8

ORG $1000
MOVE.B DATA,DO Get the data
CLR D1 Clear bit counter

Next LSL.B #1,D0 Shift whole byte left
ADC #0,D1 Add carry to bit counter
TST.B DO If data is zero, we' re done
BNE Next Check another bit

MOVE.B D1,BITCT Save bit count
STOP #$2700

DATA DC.B %$10101111

BITCT DS.B 1
END $1000



ocw.utm.my QZ}{[IJiLd

Ex 3b: Bit Counting

* This version of the program uses rotate operations

* DO contains the byte of data whose bits we want to count
* D1 contains a bit counter which will range from 0 to 8

ORG $1000
MOVE.B DATA,DO Get the data
CLR D1 Clear bit counter

Next LSL.B #1,D0 Shift whole byte left
ADC #0,D1 Add carry to bit counter
TST.B DO If data is zero, we re done
BNE Next Check another bit

MOVE.B D1,BITCT Save bit count
STOP #$2700

DATA DC.B %$10101111

BITCT DS.B 1
END $1000



ocw.utm.my @ UTM

I FIOLON A

Ex 4: Setting Parity Bit of A Byte

* This version of the program uses S

bit operations

* DO contains the byte of data whose parity bit is to be set

One Byte

Parity Bit

* D1 contains a counter which will range from 6 to O

Next

Zero

ORG
MOVE
BCLR
BTST
BEQ
BCHG
SUB.B
BCC
STOP
END

$1000
#6,D1
#7,D0
D1,DO
Zero
#7,D0
#1,D1
Next
#$2700
$1000

Set the counter to 6

Clear the parity bit to start

Test the bit specified by D1

If the bit is 1 then toggle parity bit
toggle the parity bit

Decrement the counter

Check another bit



ocw.utm.my ®©UIM

Ex 4a: Another Way to Calculate the
Even Parity Bit

* |f the byte is P0110100, then P=1 to make the
number of bit 1 in DO even.

CLR.B D1
ANDI.B #%01111111,DO
MOVE.B #7,D2
Next ROR.B #1,DO ; [C] <- LSB of DO
BCC Zero
ADDQ.B #1,D1
Zero SUB.B #1,D2

BNE Next
ROR.B #1,D0
LSR.B #1,D1 ;Move LSB of D1 to C
BCC Exit

ORI.B #%$10000000,D0
Exit



ocw.utm.my

Ex 5: Greatest Common Divisor

START

Greatest Common Divisor (GCD) is the

biggest number that can divide both

inputs.

Example: The GCD of 15 and 24 is 3

LOOP

because both numbers can be divided

evenly by 3.

Many ways to compute but the one
shown is Euclid’ s algorithm.

/* m > n > 0 */
while( m > O
if( n > m

T = m;

} /* swap */

m -= n;
}

return n;

SKIP

DONE

GCD

ORG
MOVE
MOVE
TST
BEQ
CMP
BGT

EXG
SUB
BRA
MOVE

STOP
DC.W
DC.W
DS.W
END

$1000
M, DO
N,D1
DO
DONE
D1,DO
SKIP

DO,D1

D1,DO0

LOOP
D1,GCD

#5$2700
24
15
1
START

©

UTM

I FIOLON A



Ex 6: Leap Year Calculation

Rules:

— Years divisible by four are leap years, unless...

ocw.utm.my

— Years also divisible by 100 are not leap years, except...

— Years divisible by 400 are leap years.

if (year mod 4 '= 0)

{use 28 for
else if (year

{use 29 for
else if (year

{use 28 for
else

{use 29 for

days in
mod 400
days in
mod 100
days in

days in

February}
== 0)
February}
==N0))
February}

February}

In-class Exercise..

©

UTM

T OO AT



- oowutmmy ®UIM
Pitfalls

* Example:

MOVE .B #$CO0,DO MOVE.B #$CO0,DO
CMP.B #25,D0 CMP.B #25,D0
BGE NEXT BHS NEXT

— Will the branch be taken?

* Example:

MOVE.B #$40,D0

MOVE.B #$60,D1

ADD.B DO,D1 [D1]=$A0
BMI MINUS

— Will the branch be taken?
6-37
-



Advanced Uses of JMP

* JMP can use many addressing modes.

CASE Test of
CASE 1: Actionl
CASE Action?
CASE 3: Action3

N

END:

IF TEST=0 THEN
Actionl

ELSE IF TEST=1 THEN
Action?

ELSE IF TEST=2 THEN
Action3

ocw.utm.my

JMPTAB

Actionl ..
Action2 ..
Action3 ..

CLR.L DO

LEA JMPTAB, A0

MOVE.B TEST,DO

ASL.L #2,DO

MOVEA.L (AO,DO) ,A0

JMP (AO)

DC.L Actionl

DC.L Action2

DC.L Action3
Codel
Code2
Code3

[DO] <-

@©UIM

I FIOLON A

[DO] *4

6-38



~ oowutmmy
Advanced Uses of JMP

$4000
ACT1
ACT2

DO

TAB,AQ
(A0,D0) ,A0
(A0)

#$2700

#58888,D1
EXIT
#$1111,D1
EXIT

$4000




