

Chapter 2

Introduction to Genes and Genome

Prokaryotic Cell

- From Greek words; pro (before) and karyon (shell/ nut)
- Mostly are unicellular
- 100nm-10 μm
- Organisms lack of nucleus or organelles
- Consist of 2 domains: bacteria and archaea

Comparison of prokaryotic and eukaryotic cells

	Prokaryotic cells	Eukaryotic cells
Cell Type	Eubacteria, Archaebacteria	Protists, Fungi, Animal and Plant cell
Size	100nm-10 micrometer	10-100micrometer
Structure	No nucleus, DNA located in the cytoplasm, Lack of organelles	DNA enclosed in a membrane-bound nucleus. Many organelles

Diversity

Eukaryotic Cells

- Most cell contain complex structures enclosed within membranes such as mitochondria, chloroplasts and Golgi apparatus
- 10-100 μm
- Examples of organanisms:
 - Plant and animal cell
 - Fungus
 - Protist

What is gene?

- A unit of heritance in live organism
- Genes hold the information to
 - Build and maintain an organism's cells
 - Pass genetic traits to offspring
- Resides on DNA segments
- Also called genetic materials
- Long-term storage of information

DNA component

- Nucleotide consist of:
 - pentose sugar
 - phosphate molecule
 - nitrogenous base
 - 4 bases : A(adenine), T(thymine), G(guanine) and C(cytosine)
 - Nucleotides joint together to formed to form long strands called DOUBLE HELIX

Building block of DNA and RNA

RNA

Consist of :

- ribose sugar
- Nitrogenous base(A,U,C,G)
- Phosphate
- Centre of protein synthesis
- 3 types: mRNA, rRNA and tRNA

mRNA

mRNA

- Carry information of protein sequence to the ribosomes
- Contained codon (every 3 nucleotides) that correspond to one amino acid.
- Encode protein product

rRNA

- Component of ribosom
- Protein factory
- Decoding mRNA into amino acids
- Interacts with tRNA by providing peptidyl transferase

tRNA

- Transfers a specific active amino acid to polypeptide chain at the ribosomal site during translation
- Contained 3 base region called anticodon
- One tRNA molecule can be attached to only one type of amino acid

Differences of RNA and DNA

DNA	RNA
single-stranded	double-stranded
Pentose sugar	Ribose sugar
Adenine =Thiamine	Adenine=Uracil

Genetic Code

- Coded information of genetic material
- Process involved: Transcription and translation
- The code defines a series of codons and therefore produce amino acids
- Comprises of 64 triplet
- Start codon: AUG or metionine
- Stop codon: UAG, UGA andUAA
- Nonsense codon or termnation

Anticodon

- A unit made up of 3 nucleotides bases that correspond to the three bases of the codon on the mRNA.
- Each tRNA contains a specific anticodon triplet sequence that can base-pair to one or more codons for an amino acid.

DNA Replication

- Fundamental process occurring in all living organisms to copy the DNA
- Replication process from template (dsDNA) to produce complementary strand
- Therefore, two identical DNA molecules will produce from each template DNA
- Begins at specific locations in the genome, called origins
- E. coli : dnaA and ORC in yeast

- •The **replication fork**: Structure that forms within the nucleus during DNA replication
- •The **leading strand template** is the template strand of the DNA double helix that is oriented in a 3' to 5' manner while 5' to 3' is the **lagging strand template**.

