OPENCOURSEWARE

SEE 3223 Microprocessors

8: Stacks & Subroutines

Muhammad Mun’im Ahmad Zabidi (munim@utm.my)

Innovative.Entrepreneurial.Global

ocw.utm.my

Module 8: Stack & Subroutines

Concepts of Stack

Using the 68000 Stack Pointer
Subroutine Concepts

Call & Return Instructions
Parameter Passing

©UIM

ocw.utm.my @ HTM

Stacks

e Astackis a Last In First Out (LIFO) buffer containing a
number of data items usually implemented as a block of
n consecutive bytes, words or long words in memory .

* The address of the last data item placed into the stack is
pointed to by the Stack Pointer (SP).

e Application of stacks:

— Temporary storage of variables
— Temporary storage of program addresses
— Communication with subroutines

 oowutmmy ®UTM
Stacks

Low memory
(Smaller address value)
Push operation: 4
Empty Decrements SP by 1 word
locations
< Current SP
Pop operation: v
Increments SP by 1 word

Initial value "

of stack pointer (SP)
a.k.a. base of stack

8-4

ocw.utm.my @ UTM

68000 Stacks

Stack addresses begin in high memory (SO7FFE for example) and are pushed
toward low memory (SO7F00 for example). i.e. 68000 stacks grow into low
memory.

Other CPUs might do this in the reverse order (grow in high memory).

Normally, address register A7 is used as a main stack pointer (SP) in the 68000.
Using this register for other addressing purposes may lead to incorrect
execution.
68000 stack item size:

— One word for data.

— One long word for addresses.

User-defined stacks that use other item sizes (byte, long word), may be created
by using address registers other than A7.

ocw.utm.my

The Stack Pointer

A7 is a special address register, called the stack pointer.
When programming assembly, we can use SP as an alias for A7.

MOVEA.L #$3000,SP

It is also called USP (user stack pointer)

There is also a supervisor stack pointer, but we won’ t worry about it yet.

©

UTM

I TEOLON N

ocw.utm.my @ HTM

Push & Pop

The stack grows upward toward the low address when items are
pushed to the top of the stack.

The stack pointer always points to the top item on the stack.

When an item is pushed,
— the stack pointer is decreased to point to the consecutive memory above
— then the new item is added onto the stack

When an item is popped,
— the item on the top is copied to destination

— then the stack pointer is increased to point to the consecutive memory
below

ocw.utm.my @ UTM

Stack Push Operations

 To push an item onto the stack:

— The stack pointer must be decremented by one word
(i.e decremented by 2)

* We push values onto the stack using word
predecrement mode :

MOVE.W D2,-(SP) New SP Tata
MOVE.W D3,-(SP) Old SP ——

Stack Pop Operation

ocw.utm.my

* To pop an item off the stack:

— The information or data is read from the stack.

— The stack pointer incremented by one word

 We pop values from the stack using postincrement

mode

MOVE . W
MOVE . W

(SP) +,
(SP) +,

D3
D2

OdSP ——
New SP ——

data

ocw.utm.my @ HTM

Other Instructions Affecting the Stack

* Special instruction MOVEM pushes multiple registers

MOVEM DO-D4/A0-A2,- (A7) for a push
MOVEM (A7)+,D0-D4/A0-A2 for a pop

— Most commonly used during procedure calls

* Another way to put things on the stack is with the PEA instruction. It pushes an
effective address on the stack, used when pushing pointers. This will decrease A7
with 4 (the size of a pointer).

ocw.utm.my @ UTM

I TELON AT

Initializing The Stack Pointer

* It’ s the programmer’ s responsibility to initialize the stack. This involves two
steps:
— Initialize the stack pointer: The initial starting address or bottom of the stack.

— Allocate sufficient memory for items to be pushed onto the stack. This could be done
by locating the initial stack pointer at a very high memory address.

* Example:
INITSP EQU $SO7FFE Value of INITSP
MOVEA.L #INITSP,A7 Initialize SP, A7
Or ..

LEA INITSP,SP Initialize SP

T TENON AT

ocw.utm.my @ UTM

Subroutines Basics

 Asubroutine is a sequence of, usually,
consecutive instructions that carries out
a single specific function or a number of
related functions needed by calling
programs.

<main program code:

<call= SUBROUTINE —
— NEXT: <hext insbruction:=
<main program code=

e A subroutine can be called from one or
more locations in a program.

SUBROUTINE =
code for subroutine
<refurn= —

e Subroutines may be used where the
same set of instructions sequence
would otherwise be repeated in
several placesin the program.

ocw.utm.my @ UTM

I FIOLON A

Programming Subroutines

Why use subroutines?
— Code re-use
— Easier to understand code (readability)

— Divide and conquer
* Complex tasks are easier when broken down into smaller tasks

— Simplify the code debugging process.

* How do we call a subroutine in assembly?
— Place the parameters somewhere known
— JSR or BSR to jump to the subroutine
— RTS to return

* Examples of subroutines:
— Convert binary to ASCII

— Convert Fahrenheit to Celcius
— Perform output to 7-segment display

144

printf (“sd\n” b);

}

/* subrtn sqr */

int (int val) {
int sqgval;

sgval = val * val;

return sqgval;

ocw.utm.my ngLIIhA

T RECNON AT

C Assembly
main MOVE . W A,DI1
JSR
MOVE . W DO, B
STOP #52700
; ¥*** subroutine sgr ***
MUL.W D1,D1
MOVE . W D1,DO
RTS
;*** data area ***
ORG $2000
A DC.W 5
B DS.W 1
end

ocw.utm.my @ UTM

I FIOLON A

68000 Subroutine Calling Instructions

BSR <subroutine_label>

BSR = branch to subroutine
Example:

subroutine label isthe address 1 yain
label of the first instruction of the

subroutine. BSR Subroutinel

within no more than a 16-bit signed STOP
offset, i.e. within plus or minus 32K

of the BSR instruction.
Does not affect CCR

|
l
l
|
!
|
_ |
subroutine label must be I
|
l
l
: Subroutinel MOVE .. «——
|
|

ocw.utm.my @ HTM

68000 Subroutine Calling Instructions

JSR <ea>

* JSR =jump to subroutine

e Similar in functionality to BSR, addressing mode <ea> must be a
memory addressing mode.
— i.e. <EA> cannot be a data or address register.

 The advantages of this instruction:

— A number of different addressing modes are supported.
— The address of the subroutine can be determined dynamically at execution
time
* Allows the selection of the subroutine to call at runtime
— JSR does not affect CCR

* JSRis the most common form used for calling a subroutine.

ocw.utm.my @ UTM

JSR vs BSR

JSR label does: * BSR /abel does:

1. Decrement SP by 4 1. Decrement SP by 4

2. Save current PC on top of stack 2. Save current PC on top of stack

3. Jump to subroutine. New PC can 3. Branch to subroutine. New PC is
be derived using absolute mode computing using current PC and
and several address register offset provided by instruction.
indirect mode. * In other words:

In other words: 1. SP < [SP] -4

1. SP<[SP]-4 2. [SP] < [PC]

2. [SP] < [PC] 3. PC < PC + offset

3. PC<<ea>

1000
1006
100C
1012
1018
101E
1020

SUMARR

ARRAY
SUM

ocw.utm.my

JSR Example

MOVE. L
LEA
JSR
MOVE. L
STOP
NOP
CLR.L

RTS
DC.L

DS.L
END

#5,D1
ARRAY, A0
SUMARR
DO, SUM
#52700

DO

12/15/ 31
1

A
PC

$6FFC OOOO<
S6FFE | 1012
$7000 > e

00007000

00001012

ocw.utm.my @ UTM

68000 Subroutine Return Instruction

RTS

RTS = ReTurn from Subroutine

Pops the long word (return address)
off of the top of the stack and puts it
in the program counter in order to

start executing after the point of the :
subroutine call. BSR Subroutinelg

Example:
Main

Post increments the stack pointer A7 >

by 4 Stop
In other words, RTS does: Co
— PC < [SP] Subroutinel Move ..

A

— [SP] < [SP] +4 : o
Does not affect CCR RTS

1000
1006
100C
1012
1018
101E
1020

1032

SUMARR

ARRAY
SUM

ocw.utm.my

RTS Example

MOVE. L
LEA
JSR
MOVE. L
STOP
NOP
CLR.L
RTS
DC. L

DS.L
END

#5,D1
ARRAY, A0
SUMARR
DO, SUM
#52700

DO

12115[31
1

S6FFE | 1012
$7000 2 e

AT 00006FFC
PC 00001034

ocw.utm.my ©UIM

Nested Subroutines

* Main Program :
Main program

Sub1
BSR Subl JVL ’/,;l youb2
N: " - o

. .. BSR Subl Bsﬁ'Subz
STOP #$2700 N M| |

Subl: ..
BSR Sub2 \/
- \/ RTS

RTS

Sub2

ocw.utm.my @_U'I_:M

Nested Subroutines

A
$6\§) A7 GS’Q
4016 \ >
A7
4016 « L A7
Vs
4016
\ A7 /
K2 N_T %
Lo, 8 4016 S LY
7 \QC\
¥(ha

ocw.utm.my @ HTM

Passing Parameters to Subroutines

 Parameters may be passed to a subroutine by using:
— Data and Address Registers:

» Efficient, position-independent.
* It reduces the number of registers available for use by the programmer.
— Memory locations:

* This is similar to using static or global data in high level languages.

* Does not produce position independent code and may produce
unexpected side effects.

— Stacks:

* This is the standard, general-purpose approach for parameter passing.
The LINK and UNLK instructions may be used to create and destroy
temporary storage on the stack.

* Similar to the approach used by several high-level languages including C.

ocw.utm.my @ QTM

Passing Parameters in Registers

; caller

main MOVE.
JSR
MOVE
STOP

; callee

sqr MOVE.
MULS.
RTS

; data area
ORG

A DC.W

B DS.W

end

W

W

= =

A,D1

sqr * The number to be

DO, B squared is in D1.

132700 * The result is returned in
D1, DO DO, D1 is unchanged.
DO, DO

$2000

5

ocw.utm.my @ QTM

Passing Parameters in Memory

; caller

main MOVE
JSR
MOVE.

; callee

sgr MOVE.
MULS.
MOVE .
RTS

; data area
ORG

A DC.W

B DS.W

TEMP DS.W

end

W

=

= =

A, TEMP
sqr
TEMP, B

TEMP, DO

DO, DO
DO, TEMP

$2000

* The number to be squared
is in stored in TEMP first.

e The resultis returned in
TEMP.

ocw.utm.my @ UTM

I TELON AT

Parameter Passing on the Stack

If we use registers to pass our parameters:
— Limit of parameters to/from any subroutine.
— We use up registers so they are not available to our program.

So, instead we push the parameters onto the stack.

Our conventions:
— Parameters are passed on the stack
— One return value can be provided in DO.
— DO, D1, AO, Al can be used by a subroutine. Other registers must first be saved.

Both the subroutine and the main program must know how many parameters
are being passed!

— In C we would use a prototype:

int power (int number, int exponent);

— In assembly, you must take care of this yourself.

ocw.utm.my

Steps in Using Stacks

CALLER CALLER
1. Push parameters on stack 2. Call the subroutine

MOVE.W #100,-(SP) JSR SOR
MOVE.W #20,-(SP)

SP

SP —»|_RAH

0014 RAL
0064 0014

0064

\ 4

RAH = Return Address High
RAL = Return Address Low

©UIM

ocw.utm.my @ UTM

Steps in Using Stacks

CALLEE
CALLEE 4. Use the parameters & store
3. Extract parameters from stack calculation result in DO.
MOVE.W 4 (SP),DO MULU D1,D0
MOVE.W 6 (SP),D1 CALLEE
5. Return to caller
SP RTS
> RAH
PC
RAL
P, _RERL
sP6 8822 SP ‘/Pdﬂ/ RAH | RAL
0014
0064

RAH = Return Address High
RAL = Return Address Low

ocw.utm.my ©UIM

Steps in Using Stacks

CALLER CALLER
6. Use returned data 7. Clean up the stack
MOVE.W DO, SAVE ADDA #4,SP
_RER
SP o0Ta
_BAT SP gt

"1L.0014
0064

\4

Passing Parameters On The Stack

ocw.utm.my

Mul3 — multiply three numbers and place the result in DO.

Kk ok ok ok k ok kK Mall’l Prog—ram Rl i A b b I A b b b b b b i i i i i i i i b i b i b i b i i Y

NUM1, - (SP) ;Push first param
NUM2, - (SP) ;Push 2" param
NUM3, - (SP) ;Push 3¢ param
MUL3

#0,SP ;Clean the stack!
#52700

*kkk Kk kKK SU.brOU.tine Mul3 R IR b dh b b A b b A b b g b b b b b g b S b b A b b A b

1000 START MOVE . W
1006 MOVE . W
100C MOVE . W
1012 JSR
1018 ADDA.L
101E STOP
1020 NOP
1022 MUL3 MOVE . W
1026 MULS . W
102A MULS . W
102E RTS
ORG
2000 NUM1 DC.W
2002 NUMZ2 DC.W
2004 NUM3 DC.W

END

4 (SpP),DO ;D0 = NUM3
6 (SP), DO ;DO *= NUM2
8 (SP), DO ;D0 *= NUM1
;SP --> rtrn addr!
$2000
5
8
2

©

UTM

I FIOLON A

ocw.utm.my @ QTM

Writing Transparent Subroutines

A transparent subroutine doesn’ t change any registers
except DO, D1, AO and Al.

If we need more registers than this, we must save the
register values when we enter the subroutine and restore

them later.
Where do we store them? The stack, of course.

The 68000 provides a convenient instruction, MOVEM, to
push the contents of several registers to the stack at one
time.

ocw.utm.my @ HTM

A Transparent Subroutine

subrl _— MOVEM.L D2-D3/A2-A3, - (SP) D2
MOVE . L #32,D2
MOVE . L 20 (SP), D3 D2
D3
L MOVEM.L (SP)+,D2-D3/A2-A3 D3
RT
> A2
A2
I _ A3
We can now safely modify D2, D3, A2 and A3,
knowing that we will restore their original A3
contents later. rtrn IR—
rtrn
We saved 4 registers, so the last parameter lives SO6FFC P2
at SP + (4x4) + 4. (4 bytes/reg + 4 for the return SGFFE P1
addr.)
S7000 ?

ocw.utm.my

Review Problem

* Kk kkkkk*k Maln Program Kk khkkhkkkkk*k

1000
1006
100C
1012
1018

START

MOVE. L
MOVE. L
MOVE. L
JSR

NUM1, - (SP)
NUM2, - (SP)
NUM3, - (SP)
SUB1

Next instr..

*FHrAEFHHX Subroutine SUBL *xxxxxx

1022
1026
102E
1032

2000
2004
2008

SUB1

NUM1
NUMZ2
NUM3

MOVEM. L

D2-D3/A4, - (SP)

; show stack

MOVEM. L
RTS

ORG
DC.L
DC.L
DC.L
END

(SP)+,D2-D3 /A4

$2000
$150
$180
$12

©

UTM

I FIOLON A

ocv:l.utm.my . @g’]:M
Two Mechanisms For Passing

Parameters

* By Value:
— Actual value of the parameter is transferred to the subroutine .
— This is the safest approach unless the parameter needs to be updated.
— Not suitable for large amounts of data.
— To pass a parameter by value through the stack, use the instruction:

MOVE <EA>,- (SP)

* By Reference:
— The address of the parameter is transferred.
— This is necessary if the parameter is to be changed.
— Recommended in the case of large data volume.
— To pass a parameter by reference through the stack, use the instruction:
PEA <EA>

ocw.utm.my ®©UIM

The PEA Instruction

 PEA - Push effective address

PEA label

is the same as...

LEA label, A0
MOVEA.L A0, - (SP)

but without using AO.

* You can “abuse " this instruction to push a constant or any value on the stack.

ocw.utm.my

Passing Parameters By Reference

dbl3 — double the values of three parameters

e KX KhkAkKhkk kKK Main Program R AR R g A i A i

1000
1006
100C
1012
1018
101E
1020

2000
2002
2004

START

NUM1
NUMZ2
NUM3

PEA
PEA
PEA
JSR
ADDA. L
STOP
NOP
ORG
DC.W
DC.W
DC.W
END

NUM1
NUM2
NUM3
dbl3
#12,SP
#52700

$2000
5
8
2

S6FFC
S6FFE
$7000

©UIM

DRI TELON A

0000

1018

0000

2004

0000

2002

0000

2000

?

. ocw.utm.my @g’]:M
Using Parameters Passed By

Reference

dbl3 — double the values of three parameters

; PR R i S S i ¥ Subroutine db:|_3 PR i S i i i i ¢ 00004_
DBL3 MOVEA.L 4 (SP),A0
MOVE . W (A0), DO 1018
MULS.W #2, DO 0000
MOVE . W DO, (AO) 2004
MOYEié;eai (iil, 22(:}1 0000
RTS 2002
ORG $2000 S6FFC 0000
2000 NUML DC.W 5 S6FFE | 2000
2002 NUM2 DC.W 8 57000 2 e
2004 NUM3 DC.W 2

END

ocw.utm.my @ HTM

Characteristics Of Good Subroutines

Generality — can be called with any arguments
— Passing arguments on the stack does this.

Transparency — you have to leave the registers like you found

them, except for DO, D1, AO, and Al.
— We use the MOVEM instruction for this purpose.

Readability — well documented.

Re-entrant — subroutine can call itself if necessary
— This is done using stack frames...

ocw.utm.my @ UTM

ASCIl-Encoded Decimal To Binary
Conversion

e A useful subroutine

* Subroutine DECBIN

* AQ0 points to the highest character of a wvalid five character
* ASCII-encoded decimal number with a maximum value 65535

* The decimal number is converted to a one word binary value

* stored in the low word of DO

DECBIN CLR.L DO Clear result register
MOVEQ #5,D6 Initialize loop counter to get 5 digits
NEXTD CLR.L D1 Clear new digit holding register
MOVE.B (AO)+,D1 Get one ASCII digit from memory
SUB.B #$30,D1 Subtract ASCII bias $30
MULU #10,D0 Multiply DO by 10
ADD.W D1,DO Add new digit to binary wvalue in DO
SUB.B #1,D6 Decrement counter
BNE NEXTD If not done get next digit

RTS

I PO A

ocw.utm.my Qijb[]jihd

ASCIl-Encoded Decimal To Binary
Conversion

e A better version

* Subroutine DECBIN

* 4 (SP) points to the highest character of a valid five character
* ASCII-encoded decimal number with a maximum value 65535
* The decimal number is converted to a one word binary value

* stored in the low word of DO

DECBIN

NEXTD

MOVE.L
MOVEM. L
MOVEQ
MOVEQ
MOVEQ
MOVE .B
SUB.B
MULU
ADD.W
SUB.B
BNE
MOVEM. L
RTS

4 (SP) ,A0

D1/D6, - (SP)

#0,D0
#5,D6
#0,D1
(A0)+,D1
#$30,D1
#10,DO0
D1,DO
#1,D6
NEXTD

(SP)+,D1/D6

Get the pointer from the stack

Save the registers we’re borrowing
MOVEQ faster than CLR.L

Initialize loop counter to get 5 digits
Clear new digit holding register
Get one ASCII digit from memory
Subtract ASCII bias $30

Multiply DO by 10

Add new digit to binary value in DO
Decrement counter

If not done get next digit

Restore registers

