
SEE 3243 

Digital System 

Lecturers : 
Muhammad Mun'im Ahmad Zabidi 
Muhammad Nadzir Marsono 

Week 6: Arithmetic Circuits II —

CLA, Comparators, ALU, Multiplier

Muhammad Nadzir Marsono 
Kamal Khalil



Full Adder Delay Analysis

4 delays
2 delays

6-2

4 delays

3 delays

From From A, B A, B to to Co Co for one stage is 4 delaysfor one stage is 4 delays

From From CiCi to to Co Co is 2 delays for each subsequent stage or 2n + 2 for n stagesis 2 delays for each subsequent stage or 2n + 2 for n stages



Ripple Carry Adder Analysis

2∆

PFA

6-3

4∆6∆8∆
10∆

2∆4∆

� Total delay for final sum & carry is 2n+2 gate delays (n = # of stages)
� Assumes XOR is 2 delays
� Delay from Ci to Ci+1 is 2 gate delays (except stage 0, where delay is 4 units)

6 ∆8 ∆10∆



Carry 

Lookahead 

Adder 

Analysis
4∆

2∆

2∆
4∆

4∆

6∆

PFA

6-4

If we reduce the time to compute CIf we reduce the time to compute C33, we can reduce delay to , we can reduce delay to 
get Sget S33 (final sum) to 6 gate delays(final sum) to 6 gate delays

4∆

5∆6∆



Carry Lookahead Logic Derivation

Carry Generate Gi = Ai Bi must generate carry when A = B = 1

Carry Propagate Pi = Ai xor Bi

S = A xor B xor C = P xor C

Sum and Carry can be reexpressed in terms of generate/propagate:

6-5

Si = Ai xor Bi xor Ci = Pi xor Ci

Ci+1 = Ai Bi + Ai Ci + Bi Ci

= Ai Bi + (Ai + Bi) Ci

= Ai Bi + (Ai xor Bi) Ci

= Gi + Pi Ci



Carry Lookahead Logic
• Reexpress the carry logic as follows:

C1 = G0 + P0 C0

C2 = G1 + P1 C1

= G1 + P1 G0 + P1 P0 C0

C3 = G2 + P2 C2

• Variables are the adder inputs and C0 (carry in to stage 0)!

6-6

3 2 2 2

= G2 + P2 G1 + P2 P1 G0 + P2 P1 P0 C0

C4 = G3 + P3 C3

= G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0 + P3 P2 P1 P0 C0



Structure of One Stage in CLA

6-7

� To compute Si, only xi-1 … x0, yi-1 … y0 and c0 are needed.
� No need to wait for ci-1



Alternative CLA Design

6-8

A modified implementation:
Pi computed using OR gates (slightly faster)

∆3∆

5∆

4∆

Ci+1 = Ai Bi + Ai Ci + Bi Ci

= Ai Bi + (Ai + Bi) Ci

= Gi + Pi Ci



74x283

4-bit adder
• Uses carry 

lookahead 

internally

6-9



Cascading CLA

• Similar to ripple adder, but different latency

CLA
A B

CinCout

A3:0 B3:0

CLA
A B

CinCout

A7:4 B7:4

CLA
A B

CinCout

A11:8 B11:8

CLA
A B

CinCout

A15:12 B15:12

C16
C0

4∆8∆12∆

6-10

CinCout

S

S3:0

CinCout

S

S7:4

CinCout

S

S11:8

CinCout

S

S15:12

Delay of each stage
is 4 gate levels instead 
of 10 for ripple adders 

C16 4∆8∆12∆

16∆



Hierarchical Carry Lookahead
CarryIn

Result0-3

stage0

CarryIn

Result4-7CarryIn

C1

P
G

P
G

a0
b0
a1
b1
a2
b2
a3
b3

a4
b4
a5
b5
a6
b6
a7

Carry lookahead unit

stage1

Carry lookahead unitp0
g0

p1
g1

c1

6-11

Result8-11CarryIn

CarryOut

Result12-15CarryIn

C2

C3

C4

P
G

P
G

a7
b7

a8
b8
a9
b9

a10
b10
a11
b11

a12
b12
a13
b13
a14
b14
a15
b15

� Second level carry lookahead unit – extends lookahead to 16 bits
� If extended to 64 bits – reduces gate delay from 130 to 14, or improved by a factor of 9

stage2

stage3

c2

c3

p2
g2

p3
g3 P

G



Carry Select Adder
• Redundant hardware to make carry calculation go faster

• Compute the high order sums in parallel

– one addition assumes carry in = 0

– the other assumes carry in = 1

4-Bit Adder 
[7:4] 

0 C 8 Adder 
Low 6∆

6-12

4-Bit Adder 
[3:0] 

C 0 C 4 

[7:4] 

1 C 8 

4 
2:1 Mux 

0 1 0 1 0 1 

4-Bit Adder 
[7:4] 

C 8 S 7 S 6 S 5 S 4 S 3 S 2 S 1 S 0 

0 1 

C 4 

Adder  
High 

Low 

6∆

6∆

6∆

6∆

8∆ 8∆



Equality Comparators
1-bit comparator

4-bit comparator

6-13

EQ_L



8-bit Magnitude 

Comparator

6-14



Iterative Comparator

6-15



Arithmetic Logic Unit
• Basic building block of every CPU.

• Combinational circuit.

• Does integer addition, subtraction.

• Also does all 16 bitwise logical 

operations.

• Does not do multiply, divide.  They 

would be implemented either by a 
A L U R e s u lt

Z e ro

O v e r f lo w

a

A L U  o p e r a t io n

would be implemented either by a 

separate unit, or subroutines (slow but 

cheap).

• Floating operations are also one or 

more separate units.   (More: faster, 

costlier.)

• Why combine arithmetic & logic?  

They share a lot of circuitry.

6-16

O v e r f lo w

b

C a r ry O u t

Common symbol for ALU



Sample ALU 1: Mux Approach

c = a . bba

000

010

001

111

b

a
c

b

a
c

c = a + bba

000

110

101

1. AND gate (c = a . b)

2. OR gate (c = a + b)

Start with 

Simple 

Logical 

Operations

6-17

a c

111

10

01

c = aa

a0

b1

cd

0

1

a

c

b

d

3. Inverter (c = a’)

4. Multiplexor
(if d = = 0, c = a;

else c = b)



Sample ALU 1

0

Result

Operation

a

Use 2:1 MUX to choose 1 of 2 

logical operations

6-18

b
1

Result

If Operation is 0, then Result = a AND b

If Operation is 1, then Result = a OR b



Sample ALU 1

0

Result

Operation

a

1

CarryIn

If Op is 0, then Result = a AND b

If Op is 1, then Result = a OR b

If Op is 2, then Result = sum of (a + b + CarryIn)

Now add Full Adder for 

arithmetic

6-19

b
2

Result

CarryOut

If Op is 2, then Result = sum of (a + b + CarryIn)



Sample ALU 1

Result0

CarryIn

a0

b0

Result1
a1

b1

Operation

ALU0

CarryIn

CarryOut

ALU1

CarryIn

CarryOut

Repeat the 1-bit ALU 32 times

6-20

Result31
a31

b31

Result2
a2

b2
ALU2

CarryIn

CarryOut

ALU31

CarryIn

If Op is 0, then Resulti = ai AND bi

If Op is 1, then Resulti = ai OR bi

If Op is 2, then Resulti = sum of (ai + bi)



ALU 1 with Subtraction Ability

0

Result

Operation

a

1

CarryIn

Binvert

If Op is 0, then Result = a AND b

If Op is 1, then Result = a OR b

If Op is 2, 

and if Binvert is 0, 

then Result = sum (a + b)

6-21

2

CarryOut

0

1

b

then Result = sum (a + b)

if Binvert is 1, 

then Result = sum (a + (-b))

Note that (- b) is 1’s comp

Add a 1 into Carryin0 to get 2’s comp



ALU 1 with Zero Detection

Control Lines Function

Binvert

6-22

Control Lines Function

000 and

001 or

010 add

110 sub



Sample ALU 2: Truth Table Approach
We want to design an ALU which can do the following operations:

m1 m0 Operation

0 0 A plus B

0 1 A minus B

1 0 A plus 1

1 1 A nor B

Assume inputs A and B are 4-bit 2’s complement numbers, and F is output.

One way of obtaining the circuit is by creating the truth table:

m1 m0 a3 a2 a1 a0 b3 b2 b1 b0 f3 f2 f1 f0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 A plus B
0 0 0 0 0 0 0 0 1 0 0 0 1 0
.
.
.
1 1 1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 0 0 0 0 A nor B

A huge truth table. Imagine truth table for 8-bit inputs!

6-23



Sample ALU 2
• Design a universal logic block (called 

a bit slice) that accepts only 1-bit of 

the inputs (per logic block).

• We then copy and connect this bit 

slice as many times as there are 

input bits.input bits.

6-24

m1 m0 Operation

0 0 A plus B

0 1 A minus B

1 0 A plus 1

1 1 A nor B



Sample ALU 2
• Each bit slice has 5 inputs and 2 outputs. Truth table is 

on the right.

• Remember, the bit slice circuit is universal, i.e. exactly 

same circuit for all input bits.

• For A plus 1 operation for example, we don’t need B 

input. But remember, it must be universal. Other 

operations require B input.operations require B input.

• Another example: NOR operation doesn’t require cini 

input, but the truth table for NOR operation must have 

cini input.

6-25

m1 m0 Operation

0 0 A plus B

0 1 A minus B

1 0 A plus 1

1 1 A nor B



Sample ALU 2
Bit Slice Circuit for Sample ALU 2 

6-26



Sample ALU 2
Circuit for Sample ALU 2 for 4-Bit Inputs

6-27



74x181 TTL ALU

S3 
0 
0 
0 
0 
0 

S2 
0 
0 
0 
0 
1 

S1 
0 
0 
1 
1 
0 

S0 
0 
1 
0 
1 
0 

Logic Function 
F = not A 
F = A nand B 
F = (not A) + B 
F = 1 
F = A nor B 

Cn = 0 
F = A minus 1 
F = A B minus 1 
F = A (not B) minus 1 
F = minus 1 
F = A plus (A + not B) 

Cn = 1 
F = A 
F = A B 
F = A (not B) 
F = zero 
F = A plus (A + not B) plus 1 

Selection M = 1 M = 0, Arithmetic Functions

6-28

0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1

1 
1 
1 
1 
0 
0 
0 
0 
1 
1 
1 
1

0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1

0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1

F = A nor B 
F = not B 
F = A xnor B 
F = A + not B 
F = (not A) B 
F = A xor B 
F = B 
F = A + B 
F = 0 
F = A (not B) 
F = A B 
F = A

F = A plus (A + not B) 
F = A B plus (A + not B) 
F = A minus B minus 1 
F = A + not B 
F = A plus (A + B) 
F = A plus B 
F = A (not B) plus (A + B) 
F = (A + B) 
F = A 
F = A B plus A 
F= A (not B) plus A 
F = A

F = A plus (A + not B) plus 1 
F = A B plus (A + not B) plus 1 
F = (A + not B) plus 1 
F = A minus B 
F = A plus (A + B) plus 1 
F = A plus B plus 1 
F = A (not B) plus (A + B) plus 1 
F = (A + B) plus 1 
F = A plus A plus 1 
F = AB plus A plus 1 
F = A (not B) plus A plus 1 
F = A  plus 1

� Due to arithmetic equivalence, active HIGH or active LOW input and outputs are available!
� Not all operations useful, but fall out when doing the useful ones



74x181 TTL ALU

6-29



16-bit ALU with 

Carry Lookahead 

Unit

182
P3
P2

P2
15
6

7

181
A3
A2
A1
A0
B3
B2
B1
B0
Cn
M

S3S2S1S0

F3
F2
F1
F0

A=B

G
P

Cn+41

2

3 4 5 6

7
8

9
10
11
13

14

15

16
17

18

19

20

21

22

23

181
A3
A2
A1
A0
B3
B2
B1
B0
Cn
M

S3S2S1S0

F3
F2
F1
F0

A=B

G
P

Cn+41

2

7
8

9
10
11
13

14

15

16
17

18

19

20

21

22

23

C16

CLA unit speeds up 

6-30

P2
P1
P0
G3
G2
G1
G0
Cn

Cn+z 

Cn+x 

P
G

Cn+y

13
3
1

14
5
4
2

15

12
11
9

10
7S3S2S1S0

3 4 5 6

181
A3
A2
A1
A0
B3
B2
B1
B0
Cn
M

S3 S2S1S0

F3
F2
F1
F0

A=B

G
P

Cn+41

2

3 4 5 6

7
8

9
10
11
13

14

15

16
17

18

19

20

21

22

23

181
A3
A2
A1
A0
B3
B2
B1
B0
Cn
M

S3S2S1S0

F3
F2
F1
F0

A=B

G
P

Cn+41

2

3 4 5 6

7
8

9
10
11
13

14

15

16
17

18

19

20

21

22

23

C0

CLA unit speeds up 
calculations of multi-chip ALU



74x381 and 74x382 ALUs

• Compared to 74x181, these ALUs encode their select inputs more compactly, and 

provide only eight different but useful functions

• The difference?

– 74x381 provides group carry lookahead outputs

– 74x382 provides ripple carry-out and overflow outputs

6-31



Combinational Multiplier
A3 A2 A1 A0

B3 B2 B1 B0

A3B0 A2B0 A1B0 A0B0

A3B1 A2B1 A1B1 A0B1

A3B2 A2B2 A1B2 A0B2

A3B3 A2B3 A1B3 A0B3

S7 S6 S5 S4 S3 S2 S1 S0

� Product of 2 4-bit 
numbers is an 8-bit 
number

� Product of m-bit x n-
bit numbers is an 
(m+n)-bit number

6-32

S7 S6 S5 S4 S3 S2 S1 S0

1 1 0 1 (13) multiplicand

X 1 0 1 1 (11) multiplier

1 1 0

1 1 0 1

0 0 0 0

1 1 0 1

1 0 0 0 1 1 1 1 (143) product

Partial products



Combinational Multiplier

AND 
computes 
A0 B0

6-33

Half adder 
computes sum.  
Will need FA for 
larger multiplier.



Basic Idea of A Larger Multiplier

6-34



4x4 Combinational Multiplier

A 0 B 0 A 1  B 0 A 0 B 1 A 0 B 2 A 1 B 1 A 2 B 0 A 0 B 3 A 1 B 2 A 2 B 1 A 3 B 0 A 1 B 3 A 2 B 2 A 3 B 1 A 2 B 3 A 3 B 2 A 3 B 3 

HA HA 

F A 

F A 

F A 

HA 

F A F A 

6-35

Note use of parallel carry-outs to form higher order sums

12 Adders, if full adders, this is 6 gates each = 72 gates

16 gates form the partial products

total = 88 gates!

S 0 S 1 

F A 

S 3 S 4 S 2 

F A 

S 5 

F A 

S 6 

HA 

S 7 



Combinational Multiplier
Another Representation of the Circuit

Building block: full adder + andF A 

X 

Y 

A B 

S 
CI CO 

Cin Sum In 

Sum Out Cout 

6-364 x 4 array of building blocks

Sum Out Cout 


