

Fundamentals of Environmental Chemistry

Environmental Chemicals

(Lecture 3)

Dato' Prof. Zaini Ujang

Ph.D., PE (M), C.Eng.(UK), C.W.E.M. (UK), C.Sci (UK)

Institute of Environmental & Water Resource Management Universiti Teknologi Malaysia

Lecture 3: Environmental chemicals (1 hr)

- Chemicals in environment
- Detection and measurement
- The atmosphere
- Water
- Soils
- Biota

Chemicals in environment

- We are surrounded by natural and synthetic chemicals that can become hazardous upon sufficient exposure
- Synthetic chemicals received more attention chemical pollution by manufacturing sector
- Toxic Release Inventory (TRI)

 attempt to identify & locate
 the release of chemical wastes
 into water, air and soils

Applications of chemicals:

- Cyclic & acyclic chemicals
- Plastics & resins
- Cyclic intermediates
- Miscellaneous products
- Surfactants
- Elastomers
- Plasticizers
- Pesticides
- Rubber processing chemicals
- Dyes
- Medicinals
- Flavours & fragrances
- Organic pigments

Detection and measurement

- Concentrations, fate of each chemical, exposure levels are determined by analysis
- Analytical
 measurements are
 inherently erroneous,
 but the degree of error
 can be estimated and
 minimized

Chemical analysis:

- Sampling
- Purification
- Detection
- Measurement
- Data interpretation

Number of water pollution sources by sector to Malaysian rivers (DOE, 2001)

- Sewage plants (6,693)
- Manufacturing industries (5,086)
- Pig farming (909)
- Agro-based industry (472)

uring agro-

industry

piggery

ocw.utm.my

Number of industrial water pollution sources (agro-based and manufacturing industry) (DOE, 2002)

Food and beverage	1,410
Chemical-based	800
Paper	532
Rubber-based	435
Textile	408
Electric and electronic	358
Palm oil mill	355
Metal fabrication	296
Non metallic mineral	207
Metal finishing and electroplating	185
Transport equipment	132
Rubber mill	117

ocw.utm.my

Estimated organic pollution loading (BOD) by industrial sectors, 2001

Industry	Number	BOD (ton/d)
Rubber	117	2.1
Palm oil	355	19.9
Rubber-based	435	1.6
Paper	435	5.1
Chemical-based	800	2.2
Food and beverage	1410	12.9

Number of industrial pollution sources by states (DOE, 2002)

Johor	1,597
Selangor	1,486
Perak	572
Sabah	420
Sarawak	326
Melaka	279
Kedah	210
Negeri Sembilan	186
Pahang	122
Kelantan	102
Pulau Pinang	89
Kuala Lumpur, Federal Territory	89

Interim National River Water Quality Standards

Paremeters	I	IIA	IIB	III	IV	V
Amm-N	0.1	0.3	0.3	0.9	2.7	>2.7
BOD	1	3	3	6	12	>12
COD	10	25	25	50	100	>100
DO	7	5-7	5-7	3-5	<3	<1
рH	6.5-8.5	6-9	6-9	5-9	5-9	-
Color (TCU)	15	150	150	-	-	-
TDS	500	1000	-	-	4000	-
TSS	25	50	50	150	300	>300
Turbidity (NTU)	5	50	50	-	-	-
FC(per 100ml)	10	100	400	5000	5000	-
TC(per 100ml)	100	5000	5000	20,000	50000	>

Zaini Ujang

Lecture 3 - Environmental Chemicals

Effluent quality standards in Malaysia (1974-2002)

Parameters (24)	Standard A	Standard B
BOD (mg/L)	20	50
COD (mg/L)	50	100
SS (mg/L)	50	100
TN (mg/L)	- (5?)	- (10?)
TP (mg/L)	- (0.5?)	- (3?)

ocw.utm.my

Principles

Point Source Pollution Control

Zaini Ujang

Lecture 3 - Environmental Chemicals

Environmental sampling & analysis

- Sample must be representative
- Samples should be collected at several sites several times
- Replicate samples
- What to analyze?
- Surrogate?

Analysis:

- On-site analysis
- Conventional laboratory analysis
- Advanced lab analysis

Environmental sampling & analysis Example

- Treatment of sewage
 using conventional
 extended aeration
 activated sludge, followed
 by membrane bioreactor
 and reverse osmosis
 membrane
- Objective: Production of treated wastewater suitable to be used for industrial process water

Analysis:

- On-site analysis
- Conventional laboratory analysis
- Advanced lab analysis

Environmental sampling & analysis

Example

Environmental sampling & analysis

Parameters	S1	S2	S3	S4
BOD or COD	daily	daily	daily	daily
SS or TSS	daily	daily	daily	daily
TOC	2/week	2/week	2/week	2/week
Faecal Coliform	-	-	2/week	2/week
Metals (??)	-	-	1/week	1/week
pH, hardness, conductivity	4/day	4/day	4/day	continuous
Flux	-	-	continuous	continuous

Some modern analytical detectors

Type	Separation	Specificity	Sensitivity
Alkali flame inonization	GLC	N, P	1
Electron capture	GLC	E-rich	0.1
Flame photometric	GLC	P, S, Sn	1
Hall conductivity	GLC	Cl	0.1
Ultraviolet absorption	LC	UV-absorbing	50
Fluorescence	LC	Fluorescent	5
Color reagent	TLC	Varies	> 1000

GLC = gas liquid chromatography; LC = liquid chromatography; TLC = thin-layer chromatography

Environmental concentration equivalents

Unit	Water	Air	Soil & biota
1 ppm	1 mg/L	40.9 MW ∝g/m ³	1 mg/kg
1 ppb	1 ∝g/L	40.9 MW ∝g/m ₃	1 ∝g/kg
1 ppt	1 ng/L	40.9 MW ∝g/m ₃	lng/kg

The atmosphere

- Atmosphere is principal recipient and transporter of pollutants, mostly in troposphere (surface to 10 km)
- Environmental chemistry is concerned with the sources, identity, levels, reactions, transport and fate of chemical species in water, soil and air environments – provide exposure information for evaluation of toxicity and risk.

Toxicity

- Intoxication is the scientific terms for poisoning
- Dose-response relationship
- The dose makes the poison
- <u>Selective</u> toxicity one species can be affected by a poison while another seemingly is not
- Selectivity is a necessary feature of medicines and pesticides, and many weed killers, e.g. are almost nontoxic to mammals because they kill plants by such nonanimal processes as photosynthesis
- Intoxication is common to all living organisms, from bacteria to people

Sawyer C.N., McCarty P.L. & Parkin G.F. (2003) *Chemistry for Environmental Engineering*. Fifth Edition. McGraw-Hill, Singapore.

Shaw I.C. & Chadwick J. (1998) *Principles of Environmental Toxicology*. Taylor & Francis, London

Lester J.N. & Birkett (1999) Microbiology & Chemistry for Environmental Scientists & Enginees. E&FN Spon, London.