

Introduction to Bioprocess Engineering SQBI2513

Basic process flow diagram

Kian Mau GOH, PhD

Faculty of Biosciences and Bioengineering

http://teknologimalaysia.academia.edu/GohKianMau/CurriculumVitae

Definition

- What is process flow sheet?
 - A diagram that is normally generated by software to represent the process of a manufacturing plant.
 - Symbols are used to show the unit operations,
 flow direction, conditions etc of the process.

- Why process flow sheet is important?
 - For the process to be easily monitor, understand, explai, troubleshoot and optimize

Discussion 3 min

	Feed- preparation	Reaction	Recovery
Definition			
Challenges			
	Up	stream	Downstream

Upstream and down stream in bioprocess engineering

- Upstream: Generally refers to the reaction part.
- include the process setup and plant setup
- From the feed tanks to bioreactors (fermenter, reactor vessels).
- Include all the unit operations that supports the bioreactors such as pump, compressor, heat exchanger, etc.
- In summary:
 - Upstream= feed preparation + reaction portion

Upstream and down stream in bioprocess engineering

- Down stream: product recovery (refinery) and purification
- Include the separation of solid and liquid
- Include the separation of cells from culture broth
- Include the breaking of cells to harvest intracellular products
- Include the separation of soluble products in the crude solution
- Include the finishing steps for purification such as crystallization and drying.
- Include product formulation and packing

Use of symbols in process flow sheet

- There may be hundreds of "operation units" in a complete flow sheet.
- It will be difficult and impossible to squeeze all words and picture of machines into a piece of paper.
- Instead, symbols are frequently used in actual engineer-drawn flow sheet.

Vessel= a container that hold something, e.g liquid

Usage of a vessel

In industry, vessel can be use for:

Application	Examples
Storage	
Transport	
Reaction	

Not all vessels are the same, so are you!

Materials for bioprocess vessel

- Vessels can be made from plastic, glass, etc.
- In bioprocess/pharmaceutical industries, vessels are usually made of stainless steel
- Stainless steel = chromium + iron.
- The chromium reacts with ambient oxygen and forms a passive layer of chromium oxide (Cr₂O₃) on the surface that protects the steel from corrosion.

Materials for bioprocess vessel

- In bioprocess, the most welcome stainless steel are:
 - 304/304L
 - 316/316L (Most watches are made of stainless steel Type 316L)
- 304/304L stainless steel is cheaper and mostly used in food technology.
- "L" designation refers to a low carbon steel..

Polished surface (2 min discussion)

- The surface of a stainless steel is not smooth and may consist rust.
- The surface need to be polished. Why?

Heating and cooling in plant

- Almost all the unit operation in the flow sheet are operating at different temperature.
- Can you suggest why different temperatures are applied?
- Can you transform your idea into a flow sheet?

Heat exchanger

• Each changes of temperature in any part of the flowsheet normally require a heat transfer equipment—either heating up the stream or cooling down the temperature.

Mixing in bioprocessing

- Consider A + B +C +D → Product
- Do you think mixing is important to improve the rxn?
- Do you think there is a different in approach if:
 - All A,B, C,D and product are all liquid?
 - Some of A,B,C, or/and D are solid/slurry?

Common unit operations/components in bioprocess flowsheet-mixer

- A mixer is a device to blend/combine multiple compounds.
- Normally no reaction occur in the mixer.
 (Think: if there is a reaction occur during the mixing, what should we call the unit operation as if we cannot named it a mixer?)

Pump

- A pump is a device used to move liquids or slurries.
- A pump moves liquids from higher/lower(?) pressure, and overcomes this difference in pressure by adding energy to the system

Compressor

• A gas pump is generally called a compressor

compressor

 A gas compressor is a mechanical device that increases the pressure of a gas by reducing its volume. Compression of a gas naturally increases its temperature.

Valve

- What can a "pili air" do?
 - -__ and _ _ _
 - -__ n __ _ the speed of the flow

Test yourself! (5 min)

- Please draw a simple flowsheet based on the description below:
 - Use a pump to feed medium into a stirred jacketed reactor,
 - Use a pump to withdraw sample from the reactor.
 - The sample will be transferred into a vessel.
 - Dilute the sample with water.
 - Use a pump to transfer the diluted sample to a cooled vessel.
 - After cooling, samples will be bottled, use a valve to control the flow.

Solid and liquid separation

- Solid-liquid separation refers to:
 - Removing solid from a mixture (to get liquid)
 - Or
 - Removing liquid from a mixture (to get solid)

- Example:
 - Collect supernatant for extra cellular enzyme

ocw.utm.my

Sedimentation

Solid-liquid sep.

Membrane

Centrifugation

Sedimentation by settling tanks

- Settling tanks are used for separating solids and/or oil from another liquid
- Settling system design is controlled by four important elements:
 - 1)
 - 2)
 - 3)
 - 4)

	Sedimentation	Centrifugation	Membrane
Driving force	Gravity	Centrifugal force	?
Use of energy	lower		
Cost	lower		
Efficiency	lowest		
Advantages			