# Introduction to Bioprocess Engineering SQBI2513

#### Basic downstream processing

Kian Mau GOH, PhD

Faculty of Biosciences and Bioengineering

http://teknologimalaysia.academia.edu/GohKianMau/CurriculumVitae





## Types of bioproducts

- three major categories of bioproducts:
  - (i) cells,
  - (ii) intracellular products, and
  - (iii) extracellular products



## Example: whole cells as bioproduct

- Single-cell protein (sources of mixed protein extracted from pure/mixed cultures of \_\_\_\_\_\_, \_\_\_\_\_ or bacteria used as substiture for protein-rich food in human and animal feeds.
- baker's \_\_\_\_\_
- animal feed supplements derived from yeast fermentations.
- glucose isomerase enzyme entrapped in inactivated microbial cells and formulated as catalyst pellets
- Competent cells for transformation
- Cells strains for industrial applications.
  - Cells are either used directly or dried and packaged with only minimal further purification.



## Example: Intracellular bioproduct

- Active intracellular proteins—\_\_\_\_enzyme
- Active compounds in plants or cells
- Proteins in \_\_\_\_\_ bodies from recombinant bacterial





#### Example: extracellular bioproducts

- Proteins/enzymes secreted by signal peptide (or other secretory pathways).
- antibiotics
- organic acids
- alcohols secreted during microbial fermentations or cell culture.



## Practical questions to think...

- Are bioproducts easy to purify? Why?
- Can bioproducts be purify/recover in a single steps?





## We now move on to the methods to separate solid and liquid....

- Think for a while....
  - Why do we need to separate solid and liquid?
  - Can you give a example?



#### SEPARATION OF INSOLUBLE PRODUCTS.

#### Examples of insolubles:

- -The cells
- –Unfinished materials in the media/ substrate
- Precipitated compounds produced after the reaction
- Protein inclusion bodies inside the cells, and etc.

#### SEPARATION OF INSOLUBLE PRODUCTS.

General methods used for solid-liquid separation

(i)sedimentation,

(ii)centrifugation and/or

(iii) filtration.





#### Sedimentation

- Sedimentation can only be done if:
  - the particle \_\_\_\_\_ is large
  - \_\_\_\_\_\_is significantly different from the others
- Sedimentation processes can increase settling velocity by manipulating the environment of the particles so that they aggregate and increase their particle size.
  - Sometime a chemical called Alum (hydrated aluminuum potassium sulfate) is used to precipitate the particles



### 3 min Group discussion (3-4 persons)

 The efficiency of sedimentation is low. Can you think of other options to increase the efficiency?



## Any better unit operation compare to sedimentation?

## Filtration....





### Limitation of membrane

- Can membrane clog?
- Why membrane can clog?

The scientific term where membrane clogged is called "foul" (membrane fouling...)



## Bioprocess challenge

- How to reduce membrane fouling?
- Cheap material?
- Will our product bound permanently onto membrane?
- Increase efficiency?



| Dead end filtration | Cross flow filtration |
|---------------------|-----------------------|
| Example:            | Example:              |
| Limitations:        | Limitations:          |
| Advantages:         | Advantages:           |



## Define

| Term              | Definition |
|-------------------|------------|
| Membrane          |            |
| Cake              |            |
| Retentate         |            |
| Filtrate/permeate |            |



#### **GENTLE LYSIS METHODS**

| Cell disruption method                                                                                                                                    | Application                                       | General procedure                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------|
| Osmotic lysis This very gentle method is well suited for applications in which the lysate is to be subsequently fractionated into subcellular components. | Blood cells, tissue culture cells                 | Suspend cells in a hypoosmotic solution.                                              |
| Freeze-thaw lysis Many types of cells can be lysed by subjecting them to one or more cycles of quick freezing and subsequent thawing.                     | Bacterial cells,<br>tissue culture cells          | Rapidly freeze cell suspension using liquid nitrogen, then thaw. Repeat if necessary. |
| Detergent lysis Detergents solubilize cellular membranes, lysing cells and liberating their contents                                                      | Tissue culture cells                              | Suspend cells in lysis solution containing detergent                                  |
| Enzymatic lysis Cells with cell walls can be lysed gently following enzymatic removal of the cell wall.                                                   | Plant tissue,<br>bacterial cells,<br>fungal cells | Treat cells with enzyme in isoosmotic solution                                        |

## Harsh LYSIS METHODS

| Cell disruption method                                                                                                                                                                                          | Application                                              | General procedure                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Sonication Ultrasonic waves generated by a sonicator lyse cells through shear forces. Complete shearing is obtained when maximal agitation is achieved, but care must be taken to minimize heating and foaming. | Cell suspensions                                         | Sonicate cell suspension in short bursts to avoid heating. Cool on ice between bursts.             |
| French pressure cell Cells are lysed by shear forces resulting from forcing cell suspension through a small orifice under high pressure.                                                                        | Microorganisms with cell walls (bacteria, algae, yeasts) | Place cell suspension in chilled French pressure cell. Apply pressure and collect extruded lysate. |



#### **OPENCOURSEWARE**

## Harsh LYSIS METHODS— cont.

| Cell disruption method                                                                                                   | Application                      | General procedure                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Grinding Some cell types can be opened by hand grinding with a mortar and pestle.                                        | Solid tissues,<br>microorganisms | Tissue or cells are normally frozen with liquid nitrogen and ground to a fine powder. Alumina or sand may aid grinding.                                                                                                                                   |
| Mechanical homogenization Many different devices can be used to mechanically homogenize tissues. E.g blender.            | Solid tissues                    | Chop tissue into small pieces if necessary. Add chilled homogenization buffer (3–5 volumes to volume of tissue). Homogenize briefly. Clarify lysate by filtration and/or centrifugation.                                                                  |
| Glass bead homogenization The abrasive actions of the vortexed beads break cell walls, liberating the cellular contents. | Cell suspensions, microorganisms | Suspend cells in an equal volume of chilled lysis solution and place into a sturdy tube. Add 1–3 grams of chilled glass beads per gram of wet cells. Vortex 1 minute and incubate cells on ice 1 minute. Repeat vortexing and chilling two to four times. |



#### Solid-liquid separation: An Example

A heterogeneous protein that is cloned into E. coli system has a few advantages such as high expression yield. However, inclusion body is a common problem. Inclusion body is aggregated proteins that are translated/expressed but is inactive due to improper folding. Inclusion body is located inside the cells. Sometime, the Inclusion body can undergo a series process of refolding to make it active again. The process of protein refolding is done outside the cells by adding certain kinds of chemicals and reagents.

QUESTION: Say you are a bioprocess engineer/biologist in a manufacturing company. From a fermentation broth, you are ask to get the inclusion bodies and pass it to the lab for protein refolding process, how are you going to solve the problem?

#### Problem solving strategy:

| 1. | Identify | statement | t of | prob | lem: |  |  |  |
|----|----------|-----------|------|------|------|--|--|--|
|----|----------|-----------|------|------|------|--|--|--|

2. Create a flow method/flow sheet (how many steps do you need?):



## Liquid-liquid extraction

- Do oil and water mix?
- What happen after we put water into oil and leave it for a long time?



When oil and water meet, they are immiscible liquids



#### ADVANCE PRODUCT RECOVERY:

#### Liquid-liquid extraction



- Extraction is a process in which two phases come into contact with the objective of:
  - transferring a solute or particle from one phase to the other.

#### After some time





# ADVANCE PRODUCT RECOVERY: Liquid-liquid extraction



- Extraction is a process in which two phases come into contact with the objective of:
  - transferring a solute or particle from one phase to the other.

