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This Chapter Learning Outcomes

1. Knows how to collect VLE data from experiment
2. Able to calculate Y; from the VLE data
3. Able to develop correllation for Y; from the VLE data

4. Knows how to use the VLE data to determine correlation’s
parameters

5. Familiar with the commonly available correlations
for Y,
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VLE Data Collection @

VLE critena, Sampling {yi}
fA.l _ ]?_v points
’}/Z.Xi ]: = éiyip

If gas phase 1s an 1deal-gas mixture,

we get modified Raoult's Law (see chapter 10),

Y. =— note: at azeotrope y, = x,, S0 Y,;” =

o t t
xl Pisa ])isa
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Method to Predict Y.

Let’'s go to the lab and carry out an experiment
to get VLE data (P, x4, y,) for
Chloroform(1) / 1,4-Dioxane(2) at T=50°C

Note:
The pressure is low,
so we could assume an ideal-gas
mixture, hence could use the Modified Raoult’s Law



Plot of Px,y, diagram is on Figure 12.6(a)



ocw.utm.my ©UIM

We will now develop a correlation of Y; from the data.

We are going to see specifically how the Margules Eqgn
was developed.

This is a data reduction method (Empirical).
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First we will use the VLE data for the binary system to,

1. Calculate y, and y, from Modified Raoult's Law
2. Calculate Iny, and Iny,

E E
3. Calculate G— and G .
RT xlszT

Eqn 11.99 for binary system,

GE
E = Xl ln”y1+ .sz lnyz

Divide both side by x x,
G* 1

T RT = ;(x1 Iny +x Iny,))
1”2 172




From the VLE data, we tabulate

G* G*
ny, Inv, RT  xx.RT
1772
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Plot InY, vs x,

Plot InY, vs x,

Plot GF/RT vs x,

Plot GE/xx,RT vs X,

These are represented by the dotted points Iin
Fig 12.6(b).
Also plot Pvsx, and Pvsy, ie.Px,y,diagram

These are represented by the dotted points Iin
Fig 12.6(a).
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Note in Fig 12.6(b): Plot GE/x,x,RT vs x, is more

linear than others.

Let's gives the following mathematical linear relation,
GE

= A x +A4.x, (12.9a)

xlszT
GE
whenx, =1, x, =0 =—1.27=4 1+/O
1 2 xlszT 21( ) 2( )
GE
whenx =0, x, =1 =—-0.72=4 + |
! 2 xlszT }ij A12( )
SO

A, =-127 A, =-0.72

21

1.e. Intersections on vertical axis at both ends.
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Rearrange 12.9a,

GE
a7 =(4,x, + A4, x,)xx, (12.9b)
then multiply » on left side and nn’ / n” on the rightside

nG* nx, nx
RT = n(A21xl + 1412x2) ;12 .

nl n2
2

n

:(A21n1 T 14"12722)



Substitute into eqn 11.96,

nG* nn
a( RT) ) a[(1421,11_'_1412 2

on on

1 1

Iny,

:( i+ A, 2)(—+nn( 2n3)j n1n22‘421

n

1 2n n A
= n, ( 21 1+A12 2)(’1__—3]+ 1221

n n
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ny, =n, (A21n1 T A12n2) T3 | T
n n n
for n.=xn

Iny, = x, [(Azlxl + A12x2)(1 B 2x1)+ xlAZlJ

_A21x1 - 2A21x12 T A12 2 2A12x1x2 T x1A21i|
_2A21x1 B 2A21x12 B ZA]lexz T ‘/412x2i|
_2‘421)61(1 =X )= 24,0x, 4 1412sz

_2A21x1x2 B 2‘412x1x2 T A12x2]

24y, - A,)x, + A4, | (12.10a)
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So we get the correlation for activity coefficient,
Iny, =x3| A, +2(4, — 4,)x, | (12.10a)

Similarly, differentiate Egn 12.9b with respect
to component 2 will give,

Iny, = x| 4, +2(4, - 4,)x, | (12.10b)

Note: All these were derived from,
GE
XX, RT

=Ax+A4x  (12.92)

Eqn 12.9a,12.10a, 12.10b are the Margules Equations !!!!



ocw.utm.my @UIM

For various values of x, and the experimental data
for vapor pressures (Ps®), and using A,,=-0.72 and A,,=-1.27,

1. Recalculate y, and P using BUBL P calculation and
Modified Raoult’'s Law.

2. Recalculate InY,, InY, , GE/RT , GE/x,x,RT using the
Margules correlations.

and replot the VLE diagrams for
Chloroform(1)/1,4-Dioxane(2) at T=50°C.

These are represented by solid lines in Fig 12.6. Observe that
the correlations fit the data very well.



Other Empirical Models for Y,
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The Redlich/Kister Expansion

GE
xlszT

= A+ B(x, —x,)+ C(x, —x,)"+....... (12.14)

For truncation after one term,
GE
xxX,RT

= A

Apply eqn 11.96 to give,

Iny, = ij Iny, = Axl2 (12.15a,b)
“~~ Note: This is the

_ _ correlation used in
Iny =y, =4 example 10.3

Where at infinite dilution,



For truncation after two terms,

GE
= A+ B(x, —x,)
XX, RT
Ifwedetme A =A+B , A _=A-B ... (a)

we can show that this 1s equal to Margules Eqn.

Substitute (a) into Margules Eqn, we get

GE
xx,RT
= A(x, +x,)+ B(x, —x,)= A+ B(x, — x,)

=(A+ B)x,+(A— B)x, = Ax, + Bx, + Ax, — Bx,
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van Laar Equations

X, X

——+ = A+ B'(x,—x,) = (A'+ B')x, +(4'- B')x,
RT
let
1 |
A+ B'=— and A'-B'=—
A21 14]2
S0,
XX, X X, _ A]le + A21x2

E = —+— N
GAT A21 A‘JZ Al2A21

GE — A12A21
xlszT Anx1 + A21x2
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Apply Eqn 11.96, we get

A j

AZ 1x2

, 2
. A x

Iny, = A21£1+ A?l 2]

2x1

At infinite dilution,

Iny, = 42(1_

whenx =0 Iny = Al'2

whenx, =0 Iny = A;l

(12.17a)

(12.17b)
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Features of Margules, Redlich/Kister
and van Laar Equations

Applicable to binary mixture only
Empirical (fitting VLE data)

No theoretical foundation

Y, is independent of pressure

Applicable at constant T
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Other Y; models:

Local Composition Models
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Local Composition Models

The first of these models was introduced in 1964
by G.M. Wilson and known as the Wilson equation.

Next comes the NRTL (Non-Random-Two-Liquid)
by Renon and Prausnitz.

After that is the UNIQUAC (Universal Quasi-Chemical)
by Abrams and Prausnitz.

Later on, the UNIFAC (an improved version of
UNIQUAC) that is based on molecular groups’
contribution.
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The Wilson equation
GE

- :_E‘Xi(lnzxinjj (1222)

RT :

from this we will get the correlation for gamma,

x A .
Iny. =1-In| » x A |-) =4 (12.23)
l (Z U]gzm@.
j
where
Al.j=1 for i =7
A = T e £ 7 12.24
.= —eX == .
=y pRT (i#)) ( )

1

a, 1s binary parameters and

V. 1s molar volume of pure liquid 1 at T
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Apply Wilson equation to a binary system,

GE
E = —X, ln(x1+x2 12) X, ln(x T X 21)
that gives,
A A
1117’1 = _ln(‘xl +x2 12) X [ N B . )
Xt szlz X, x1A21
A A
ln)’z = —ln(x2 +x, A, )X ( N B . ]
X+ szlz Xy ¥ x1A21
where

Iny"=—-InA_+1-A_ Iny” =—-InA +1-A
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See equations 12.20, 12.21a, 12.21b etc for
NRTL equation.

More information on UNIQUAC and UNIFAC
iIn Appendix H.
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The Gamma/Phi Formulation
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VLE Criteria for Multicomponent System

So,
yixi Jpz = ¢iyiP

We know that,

\/.l P_Psat
f;_Zf;_I=¢fatPisat exp ,( RT, ) (1144)
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Substitute,
I/il(P_])iSClt) - R

sat sat
VX ¢i Pz CXp

RT
Rearrange,
yx P = el
AN A ¢Sat V;Z(P—Bsat)
- ex
o P RT
B A. _VI(P_ Psat)_
=| —exp— : y.P

gbf“t RT ’
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Define,
A _Vl (P - PSal‘)
O =| —exp— :
SN RT

Then, we get

the Gamma/Phi formulation,

27 Pisat B (DiyiP

®UuL

(14.0)

(14.1)

=



At low to moderate pressure,

_V'll(P_ Bsal‘)

eX
P RT

~
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For low to moderate pressure, we
can use two-term Virial EOS,

a P
6 = exp E(Bﬁ +;;; Yy, (25, - 5/.,()) (11.64 & 14.4)

where
5}7 = ZBﬁ. -B, - B,-,- and 5jk = ZBjk — Bjj — Bkk

0.=60.=0 and 0.=96.
li Ji I JI

RT.
— ¢l 0 1 _ J _ 1/2
B,=— (B°+0,B8") o= T, =(T,T)2(1-k,)

] ci Cj
cif

Z RT. Z +Z, (vgﬁ FV3 T

cij cij Ci cj Cj
Cif o] Cif
V., 2 2
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Also,

} Bﬁesat |
RT

0 =¢. =exp (11.36 & 14.5)

Note : Bl.l. =B

Where, eqn 3.62 and 3.63 give,

BP
c — B + B (3.63)
RT,
422 172
BO:O.083—O and BI:O.139—O /

1.6 4.2
T T
r r



Therefore eqgn (14.0) becomes,

) eXp{ [ +3 ZEyyk@ =J )H

i ¢:at _ Bl.l. ])isat
ex S
P\ R

B P
— exp{ ( 4+ - ZZy yk(2 ] ﬁ}

_Bii(P_ BSQI)J“%PZZYJ%(MJI- o 5jk)_

= exp IéT £ (14.6)




ocw.utm.my

Apply to binary system,

O

()

= exp

= exp

B sa 2
B, (P-FH )+ Py2512

RT

i sa 2
B,(P—F t)+Py1512

RT

(14.7a)

(14.7b)
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Note: We could use the following eqgn that is
based on generic cubic EOS to fugacity
coefficient for species i in solution or mixture,

Ing = %(z- l)-In(Z-B)-q,1 (14.50)
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the Gamma/Phi formulation,

|27 Bsat ~ yi(DiP

For ideal gas mixture, in equilibrium with
non-ideal liquid solution @, =1

yx. P =yP Modified Raoult's Law

For ideal gas mixture in equilibrium with
ideal liquid solution v, =d =1

x P =yP Raoult's Law

l
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VX Bsat ~ yiq)iP
For VLE calculation, we need
o =d(T,P,y,y,,....y,_,) sucheqn 14.6
v.=v(T,x.,x,,...x, ) see chap 12 for correlations

TUN-1

P = f(T) such as Antoine Eqn
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Bubblepoint Calculations

Psa t

ZXK ZX = i

0N &

Bubble pressure calculation,

sat

y P
P=)x—— 14.10
Z > (14.10)

Bubble temperature calculation,

P = t (14.13)

,}/ixi ])isat
= (143)

Since {y;} is not known,
we can’t evaluate O, .
Calculation needs
iteration (single loop).
For algorithm,

see the following
Figure 14.1 and 14.3
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Dewpoint Calculation

D P
vh_oy Ny X, =2 (149)
i Kl- ,}/iesat *}/l})l
o P
Dew pressure calculation, .
Since {x} and P are not known,
P I (14.11) Wwe can’t evaluate Y, and ¢, .
2 y@ Calculation needs iteration
y P (double loop).

For algorithm, see Figure 14.2

Dew temperature calculation,  gjnce {x} and T are not known,
t yd P we can’t evaluate Y, and ¢, .
P =Py Pjsat (14.14)  Calculation needs iteration
Vi b (double loop).

For algorithm, see Figure 14.4

[
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Flash Calculations

_ A4 (10.16)
TR K - |
F=Yy-I 1=0 (10.17) or (14.17
2., 21+V(K—1) (10.17) or (14.17)
Z .
X = ’ (14.16)
1+ V(K 1)
F=Yx-1=) ~1=0 (10.17) or (14.17)

1+V(K—1)
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F=F,-F =0

_ Zi(Ki_l) _
F _21+V(Ki_1)_o (14.19)
dF __y =KD 1400
dv 1+V(K, -1 ]

So, dF/dV is always negative, hence the F vs. V is
monotonic.

This will give rapid convergence for iteration with Newton’s
method.

F+ ar AV =F+ ar V.. -V)=0 (14.21)
dV dv ) " "



Solution Thermodynamics:
Property Change of Mixing
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Property Changes of Mixing

From definition of excess property (Chap 11):

M*=M-M"

G"=G-G"=G-(Y,xG, +RTY x,Inx, )
=AG_. — RTle. Inx,

$*=85-5"=5-(Y xS —RY xInx, )
=AS_. + Rz x; Inx,

VE=V-Vi=V->xV =AV,,

H*=H-HY=H-) xH,=AH,,
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Property Changes of Mixing
AM,, =M - xM,

For ideal solution M" =0 ., so

AG . = Rszl. Inx,
AS, =R x,Inx,
AH =0
AV . =0
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Example: Ideal Solution

A, 25°C Soln A+B 25°C

B, 25°C \Q

Energy Balance:

Q._W':AH"F@KE_I' .PE = AH
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Example: Non-ldeal Solution

A, 25°C Soln A+B, 25°C
B, 25°C \ Q
Energy Balance
0-W/E AH+AE/+AE = AH
O=nm, H — -myH,=m,, H— ZmH
=(AH .+ me/)
Q AI{mix

If the system is adiabatic, what will be the outlet temperature?
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Example Non-ldeal Solution

g Soln a+b at 75°C

A non-ideal solution of a+b flow in a pipe.

Determine the stream enthalpy (H)

H = AH}, + C,AT

We need,
1) Heat of formation of the solution!!!!

2) Heat capacity of the solution.
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Heat Effects of Mixing Processes

Two ways to solve energy balance
involving the heat of mixing,

1. Use the enthalpy of solution (H)

2. Use the heat of mixing (AH_..)
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1. Enthalpy of Solution (H)

From egn 12.39,

H=AH,, +) xH,

H could be found by using Ax diagram such as
Figure 12.17 (H,SO,/H,0),
Figure 12.19 (NaOH/H,0).
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Example 12.6

Unit Operation: Evaporator

SSSF Mass Balance: In = Out

Overall Mass Balance: m, = m, +m,

Component 1 Mass Balance: x, m, = x, ,m, + x, ;m,
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Component Mass Balance,

For NaOH: 0.1(10,000)=0.5m, + 0(m,) m, = ZOOOZZ—’:
For H,O: 0.9(10,000)=0.5(2,000) + 1(m,) m, = 8,00012—’:

Energy Balance,

Q=AH=H_ -H =mH, +m,H,—mH,

From Hx diagram (Fig 12.19) and steam table,
: b,
Q = 8000(1146)+2000(215) — 10000 -~ (34 ==

Ib,,

Q = 9260002~ Heat duty of the evaporator

Note: Reference conditions for H,O for the NaOH Hx
diagram (Fig 12.19) is similar to the textbook’s Steam Table
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If we do not have Hx diagram, use

2. Calculate AH,;, using heat of solution

or heat of formation of solution
A11298

AH®

£,298
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Heat of solution (AH ., ) diagram, Figure 12.14

Solute 25°C | Solution 25°C

Liquid 25°C | \ 0

As shown before, Q = AH, . = H — inHl.

Example: LiCl(s) + 12H,0(1) — LiCI(12H,0)

AH ,,, =—-33,614J (basis per mol solute), see Fig 12.14

~

AH mix.298 — AV 5 P
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Heat of formation of solution (AH®; ,),

Elements of Solute 25°C Solution 25°C

Liquid 25°C q

Example: Li+3Cl,+12H,0(l) — LiCI(12H,0)

/ See page 457

AH ]9’298 = —442,2247J (Basis per 1 mol of LiCl in 12 mols H,0)

Note: Referent condition for H,O is liquid at 25°C

(not its elements)
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To calculate heat of solution (AFI 203

from heat of formation of solution (AH 2,298 )

Li+1 CL+12H,0() — LiCI(12H,0) AH",,, = —442,224]
+ LiCl(s) > Li+XCl, -AH® . = 408,610

LiCl(s)+12H,0(l) = LiCl(12H,0)  AH,,, = —33,614J
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To calculate heat of formation of solution (AH ; )

from heat of solution (AH ,,, ),

Li+1Cl, - LiCl(s) AH" . = —408,610.
LiCl(s)+12H,0(1) - LiCI(12H,0)  AH,,, = -33,614J

Li+1CL+12H,0() = LiCI(12H,0) AH",,, = —442,224]
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Example 12.5

This example uses Figure 12.14 for AH

mix?’

SSSF Mass Balance: ~ In = Out
Overall Mass Balance: m, = m, + m,

Component i Mass Balance: X, ,m, = x, ,m, + x, ;m,
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Component Mass Balance,

For LiCl:  015(2) = 0.4s1, + 0(ri1,) i, = 0.75kg / s
ForH,0:  085(2) = 0.6(0.75)+ 1(siz,) m, =1.25kg /s

SSSF Energy Balance,
Q=AH =r,H, +m,H, —mH,

where:
H,=AH_, + inHi at 132°C } We do not have enthalpy

I{1 — AHmix + inHi at 250C of solution data
H , Enthalpy water vapor at 132°C

Since we only have heat of solution data at 25°C (Fig 12.14),
we need to apply hyphothetical or calculational path.
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Energy Balance,
Q=ri,H,+m,H,—nmH,
=AH"

=AH! + AH; + AH! + AH,
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AH!  : Unmixing process

Mole entering,

0.03kg(1000g/kg) _ 7 (777 melLict
42 .39g/mol ’

1.7kg(1000g/kg) _ 04 3660
18.015g/mol ’

_ mols H20 B 94.366

sO N= =
mols solute  7.077

=13.33

From Fig 12.14,
Aﬁ _33800 molSolute

AH! = 7.077 zelSolue A )—L_ = 239,250/ /s
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AH!  : Mixing process
Mole entering,
003kg(1000g/kg) — 7077 molLiCl
42.39g/mol ’
0.45kg(1000g/kg) _ 4 9g M0
18.015g/mol ’
Is H2 24,
o o MOSHI0 2498 _ 4 5

mols solute  7.077

From Fig 12.14,
AI:I _23260 molSolute

AH' = 7,077 melSolue (AF] )L _ = _164630J / s




AH'!  : Heating the solution (Sensible heat),

we need heat capacity data for the solution!!.

AH; = C,AT=0.75-£(2.728-)(132 - 25)°C
AH{ = 218.28% = 218280<
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AH;1 : Heating liquid water untill it becomes superheated water

Using steam table
Interpolation

. /
AH} = mAH = (H,,,, — H,,) = 1.25-£(2740.3-104.8 &)

AN

AHf1 = 3294.4"7" = 3294400% Use Sat Lig
at 25C
or
Use Riedel
A
AH, = mAH = m(AH . . + AH" + AH,_3,¢)
\ /

Sensible heat
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So,
Q=AH' +AH! + AH' + AH|,
Q = 239250-164630 + 218280 + 3294300

Q = 3587300]

Q=35873kJs’ The rate of heat supply (heat duty)
needed to concentrate the solution
In the evaporator.



Thank You



