
SGG 3643
Computer Programming III

GeoVisualization

Ivin Amri Musliman



Outline

• Introduction
• Fundamentals

– VRML, X3D, GML, CityGML, KML
• Multiresolution Models

– LoD
– Progressive Meshes
– Compression

• Augmented Reality



Example 1: Cholera Breakout London 1854 



Example 2: Scientific Visualization - Weather Forecast



Example 3: Visual Exploration



Example 4: Terrain Visualization



Example 5: Urban Planning using Virtual Table



Example 6: Augmented Reality (Navigation)



Example 7: Augmented Reality (Planning)



Software In3D



Virtual Reality



Geo-Visualization

• Making spatial data visible
• Transformation of spatial data into a picture  
• “Geovisualization can be defined as a field on the use of visual 

geospatial displays – including Virtual Environments – to 
explore data and through that exploration to answer 
questions, generate a hypothesis, develop problem solution, 
and construct knowledge.”



MapCube



VRML



Introduction to VRML (1/7)

• Virtual Reality Markup Language
• VRML markup language meant for displaying 3D object on the 

Web (with a plug-in) and allows users interaction and 
exploration.

• It is a scene description language. It is not a programming 
language. 

• Created by working group in Web3DC (Web 3D Consortium) on 
1994.

• The website: www.web3D.org or www.w3.org/MarkUp/VRML/
• The VRML97 specification – a document that describes the 

language.

http://www.web3D.org
http://www.w3.org/MarkUp/VRML/


Introduction to VRML (2/7)

• VRML file structure:

#VRML V2.0 utf8

#Comments

fields (22 fields)

Properties of the objects 
(behavior, quality, appearance)

Nodes (55 nodes- Group & children node)



Introduction to VRML (3/7)

• XZ plane is horizontal, Y 
axis is vertical distance.

• VRML units – meters 
(linear distance), radians 
(angles), seconds (time), 
red-green-blue (RGB) 
(color).

• Rotation – positive value 
anticlockwise.



Introduction to VRML (4/7)

• A cube with default value

Define node name
Box, Cone, Cylinder & Sphere. Default box- 2 

units in each dimension (X, Y, Z), from -1 to +1



Simple object –
cube in VRML

Introduction to VRML (5/7)



Introduction to VRML (6/7)

. . . more complex 
objects in VRML



The drawing shows front, back, 
right, left elevation, roof plan, and the plans 
for every level. These drawings provide the 

attributes of length, width and height of the 
UTM buildings.

Aerial photographs (year 2001) at
a scale of 1: 10,000 and processed 
using the Leica/Helava System to

produce the DEM, the surface 
texture as well as the spatial 

coordinates for each buildings.

Architecture drawing Orthophoto

Introduction to VRML (7/7)

• Data sources:



Comparison among the cube based on their appearance



UTM administrative building created using 3D StudioMax 

• More than 8 000 
polygons. 

• Users can’t navigate 
smoothly and 
continuously through 
the virtual world, with 
scene rendering 
instantly on the 
screen as users move

Using geometry



Using texture

• The use of texture to 
represent the outlook 
of a building.

• It is cheaper in terms 
of performance than 
drawing a large 
number of polygons 
which represent of 
windows of the 
building.

UTM administrative building created using 3D StudioMax 



Creating terrain model with ElevationGrid node

• Not so close to the 
reality, may be due 
to the number of 
spacing (i.e. quite 
large - 30 meters).

• And, due to the 
interpolated contour 
lines.



VRML node with “ElevationGrid”





Combining several objects to one world



Panorama scene using texture image



Panorama scene by specifying sky color



FKSG in VRML (Textured building model)



Block C02 (FKSG) in 
VRML



VRML requirements

• Text editor
– Emacs (linux, windows, unix) : 

http://www.xemacs.org/Download/index.html
– HTML-Kit, Notepad, WordPad (windows)

• Web browser
– Internet Explorer
– Mozilla
– Opera
– Netscape

• Plug-in
– Cortona (the one we use) : 

http://www.parallelgraphics.com/products/cortona/
– CosmoPlayer

http://www.xemacs.org/Download/index.html
http://www.parallelgraphics.com/products/cortona/


Pop-up menu

3D Window

Vertical 
toolbar

Specify 
navigation 

type in a world

Predefined action to change your 
position in the world

VRML requirements
• The Cortona VRML Client

Horizontal toolbar



Adding VRML to your website

• Put VRML code in a separate file.
• Filename should end with “.vrml” or “.wrl”
• Use the “embed” command in HTML to add the file, i.e.:

< embed src=“test.vrml” width=“600” height=“200” >



VRML file structure : The Basics

• File header
• Comments
• Brackets
• Shapes
• Colors
• 3D coordinates and transforms
• Lights



VRML file structure : File Header

• IMPORTANT: Your VRML file must always start with the:

#VRML V2.0 utf8
– Tells that the file is a VRML file.
– Tells the file is compatible with version 2.0 of the VRML 

specification.
– Tells that the file is encoded with the international standard 

utf8.
– “The VRML header not found or unsupported encoding type”.



VRML file structure : Brackets

• Brackets “{” and “}” are used in order to group things 
together logically.

• Using indentation with brackets is VERY important and makes 
code much easier to read.

• Example:

Shape
{

geometry Box { size 2.0 2.0 2.0 }
appearance Appearance
{

material Material { diffuseColor 0 1 0 }
}

}

Shape{geometry Box { size 2.0 2.0 2.0}appearance
Appearance{material Material { diffuseColor 0 1 0 }}}



VRML file structure : 3D Coordinates

• Points are represented by 3 variables corresponding to the x, 
y and z axis.

• The point (0,0,0) is referred to as “the origin”.
• Other points are referenced in relation to the origin, e.g. 

(1,1,1), (-1,0,0).



VRML file structure : Placing objects in VRML

• Use the “Transform” function along with 3D coordinates. For example,

Transform
{
translation 1 1 1
children
[
#objects (shapes etc.) added here will be at the 
point 1 1 1

]
}
#objects added here will be at the origin

• Note: Transforms can also change scale and cause rotations.



X3D



Introduction to X3D

• Extensible 3D.
• Open standards file format to represent and communicate 3D 

scenes and objects using XML. 
• X3D is the successor to the Virtual Reality Modeling Language 

(VRML). It improves upon VRML with new features, advanced 
APIs, additional data encoding formats, stricter conformance, 
and a componentized architecture using profiles that allows for 
a modular approach to supporting the standard and permits 
backward compatibility with legacy VRML data.

• Main difference between VRML and X3D is the definition of the 
event model.



Introduction to X3D

• The VRML specification left many decisions up to the browser 
implementer and therefore a lot of content was incompatible.

• The major issue was dealing with the way scene graph changes 
were propagated when the user code wrote to the field. In the 
Java language, the values would need to be delivered 
immediately.

• X3D provides both the XML-encoding and the Scene Authoring 
Interface (SAI) to enable both web and non-web applications to 
incorporate real-time 3D data, presentations and controls into 
non-3D content.

• Additional features (MPEG-4 multimedia standard support, XML 
and SVG compatible).



Introduction to X3D

X3D Supports:
• 3D graphics and programmable shaders – Polygonal geometry, 

parametric geometry, hierarchical transformations, lighting, 
materials, multi-pass/multi-stage texture mapping, pixel and 
vertex shaders, hardware acceleration,

• 2D graphics – Spatialized text; 2D vector graphics; 2D/3D 
compositing,

• CAD data – Translation of CAD data to an open format for 
publishing and interactive media,

• Animation – Timers and interpolators to drive continuous 
animations; humanoid animation and morphing,



Introduction to X3D

X3D Supports:
• Spatialized audio and video – Audio-visual sources mapped 

onto geometry in the scene,
• User interaction – Mouse-based picking and dragging; keyboard 

input,
• Navigation – Cameras; user movement within the 3D scene; 

collision, proximity and visibility detection,
• User-defined objects – Ability to extend built-in browser 

functionality by creating user-defined data types, 
• Networking – Ability to hyperlinking of objects to other scenes 

or assets located on the World Wide Web.



Introduction to X3D

• The modular architecture of X3D allows for layered "profiles" 
that can provide:
– increased functionality for immersive environments and 

enhanced interactivity or, 
– focused data interchange formats .

• Three profiles in X3D architecture:
– Interchange,
– Interactive,
– Immersive.



Introduction to X3D



Introduction to X3D

• Why use X3D over VRML97? 
– X3D is a considerably more mature refined standard than VRML 

so authors can achieve the behaviors they expect. 
– VRML compatible.
– XML encoding to integrate smoothly with other applications.
– X3D scenes and environments operate predictably between 

different players - A major problem with VRML is that it is difficult 
to develop VRML environments that play on all conformant 
browsers/players. 

– X3D is componentized - X3D is componentized which allows for 
the specification of profiles tailored to a particular large market 
segment (e.g., CAD, Medical, Visualization). 



Introduction to X3D

• Why use X3D over VRML97? 
– X3D is more feature rich.
– X3D is continually being enhanced and updated - X3D is growing 

in functionality. The Proposed Draft Amendment 1 specification 
that adds such things as 3D textures and shading languages is 
available. 

– The structure of X3D makes it much easier to update on a regular 
basis. It is also easier to add new features that adapt to the 
changing graphics and commercial markets. 

– X3D binary format offers encryption (i.e. security) and 
compression (i.e. speed).



X3D requirements

• Text editor
– HTML-Kit, Notepad, WordPad (windows)

• Web browser
– Internet Explorer
– Mozilla
– Opera
– Netscape

• Plug-in
– Octaga Player. Full free X3D player for Window and Linux. 
– BS Contact VRML X3D VRML/X3D. 
– Flux Web3D Engine from Vivaty. Free player X3D player for 

Windows (IE/Firefox). The flux player is open source and 
available on SourceForge. 



C09







Box node are used to make a wall of 
the building.

Transform node: It allows to 
position a group of objects in 3D 
space by translating, rotating and 
scale the size of objects.

Image texture to display the real 
texture of the building.



IndexedFaceSet : 
Represents a 3D 
shape formed by 
constructing faces 
(polygons) from 
vertices listed in 
the coord field. 



Generate DTM using X3D
§ Digital terrain model (DTM) that defines the surface of the 

study area, could be obtained from the 1:10,000 scale aerial 
photographs.
§ Using the Leica-Helava system, the contour lines were 

digitized manually with the setting of a 2.5 meters interval. 
§ However, they are not suitable for computing slopes.
§ The TIN model was then converted to Grid. 
§ The DTM grid interval for X (east) and Y (north) was set to 30 

meters. 
§ The DTM grid was then converted to ASCII file format, which 

contains the values of the grid points. 



Mosaic derived from aerial 
photograph

xDimension=28 
zDimension=35



The buildings and terrain model created using X3D encoding 
are all in single X3D file. So, must combine the object into 
one scene.

Anchor node: Show buildings’ name 
when user moves the cursor over an 
object (like Tooltips).

Inline node: A method of adding a copy 
of the original file into scene - allows 
reference external sources by 
specifying its URLs.

Transform node: Positioning X3D 
models in 3D space according to their 
spatial coordinates by translating 
(moving) or rotating it.

Scene Development



X3D C09 Building with real texture façade.

Scene Development



DTM with the real texture.

Scene Development



The X3D building - combine object into one scene.

Scene Development



GML



Data Exchange Formats

Data Exchange Formats

Industry
defined
formats

e.g.
• Shape, E00
• DXF
• MIF
• GeoMedia
• etc.

National defined formats

e.g.
• NDCDB (Malaysia)
• EDBS for ALK/ATKIS 

(Germany)
• DSFL (Denmark)
• Interlis (Switzerland)
• KF85 (Sweden)
• NTF (GB)
• TIGER/Line (U.S. Census 

Bureau)

The Internet 
(XML based 
formats)

• GML

Standardization 
organizations

e.g.
• GDF
• ISO/IEC 8211:1994



XML vs. GML

• What is XML?
• Extensible Markup Language
• A meta language created by W3C
• In contrast to human languages, computer languages need a 

well defined grammar
• XML is used to define (markup) languages:

– XHTML
– GML
– SVG



Characteristics of XML

• Text based
• Tags to separate the different parts
• Separation of content and display
• DTDs (Document Type Definition) in XML 1.0

– A set of rules that define an XML markup language (i.e. how the 
tags are arranged)

• Schema in XML 2.0 
– A set of rules plus a set of primitive data types and possibility to 

create own data-types



§ represent geospatial phenomena in addition to simple 2D 
linear features,
§ including features with complex, non-linear, 3D geometry, 
§ features with 2D topology, 
§ features with temporal properties, 
§ dynamic features, coverages, and observations;
§ provide more explicit support for properties of features and 

other objects whose value is complex.

GML 3.0



§ represent spatial and temporal reference systems, units of 
measure and standards information;
§ use reference system, units and standards information in the 

representation of geospatial phenomena, observations, and 
values;
§ represent default styles for feature and coverage visualization;
§ conform with other standards, including

– ISO DIS 19107 Geographic Information – Spatial Schema
– ISO DIS 19108 Geographic Information – Temporal Schema
– ISO DIS 19118 Geographic Information – Encoding
– ISO DIS 19123 Geographic Information – Coverages

GML 3.0



GML 
Data Model



GML Schema

• Feature Schema (feature.xsd) with general rules
• Geometry Schema (geometry.xsd) with definitions of 

geometry components based on the Simple Feature 
Definition of OGC

• Xlink Schema (xlink.xsd) link attributes



...
<city>

<name>Shah Alam</name>
<population>43000</population>
<gml:location>

<gml:point 
srsName=“http://www.opengis.net/gml/srs/epsg.xml#4326>

<gml:coord> <X>346000.00</X><Y>565000.00</Y></gml:coord>
</gml:point>

</gml:location>
</city>
...

Example

http://www.opengis.net/gml/srs/epsg.xml#4326>


gml:_Feature



Geometry Model



§ gml.xsd
§ gmlBase.xsd
§ basicTypes.xsd
§ dictionary.xsd
§ units.xsd
§ measures.xsd 
§ temporal.xsd
§ geometryBasic0d1d.xsd
§ valueObjects.xsd
§ coverage.xsd
§ defaultStyle.xsd
§ geometryBasic2d.xsd
§ geometryPrimitives.xsd
§ geometryAggregates.xsd

§ geometryComplexes.xsd
§ grids.xsd 
§ topology.xsd
§ direction.xsd
§ feature.xsd
§ dynamicFeature.xsd 
§ observation.xsd 
§ dataQuality.xsd
§ referenceSystems.xsd
§ datums.xsd coordinateSystems.xsd 
§ coordinateOperations.xsd
§ coordinateReferenceSystems.xsd

GML 3.0 Schemas



KML



Introduction to KML

• KML is the Keyhole Markup Language.
• KML is an XML grammar used to encode and transport 

representations of geographical data for display in a 
geobrowser.

• KML uses a tag-based structure with nested elements and 
attributes. 

• The basic building blocks of the language are called elements, 
and a tag is the way an element is represented as KML code.



Introduction to KML

• KML is focused on visualization of geographic features on 
map. The XML language also includes controls of the user’s 
navigation in the sense of where to go and where to look.

• KML was originally created as a file format for Keyhole's Earth 
Viewer, which later emerged as the Google Earth application 
allowing users to overlay their own content on top of the base 
maps and satellite imagery. 

• In 2007, Google submitted KML to the OGC. Later in 2008 
KML was adopted as an OpenGIS standard and the OGC has 
now the responsibility for maintaining and extending the 
standard.



Introduction to KML

• KMZ is a compressed (.zip) KML plus any images.
– KML documents and their related images and 3-D objects 

(if any) may be compressed using ZIP encoding into KMZ 
files. 

– This greatly reduces the file  size and makes data transfer 
more efficient.

• You can view KMLs in Google Earth application or in Google 
Maps by simply pointing at the URL from the map search box. 



Introduction to KML



Introduction to KML



Alternatives to KML
• KML:

– It is popular and the structure is simple. 
– the standard is supported by many of the popular geobrowsers.

• GML:
– Complex format.
– XML grammar which helps in the storage, exchange and 

modelling of geographical information containing both spatial 
and non-spatial attributes.

– The encoding is comprehensive in the way in which it can 
represent features with complex 3-D geometry, features with 2-
D topology, dynamic features and coverages.

– GML is not a visualisation language; it does not provide any 
information regarding how the data is to be displayed.



Alternatives to KML

• Styled Layer Descriptor (SLD) and Symbol Encoding (SE):
– two related XML languages for styling information.
– Widely used in OpenStreetMap application 

(www.openstreetmap.org).
– SLD/SE is capable of describing the rendering of vector and raster 

data. 
– Only lines, polygons, points, text and raster images are integrated 

in the description language, which makes it impossible to visualise 
multiple data values, e.g. pie charts or bar charts.

– Various proposals exist for an OGC Styled Layer Descriptor / 
Symbology Encoding extension for thematic cartography.

http://www.openstreetmap.org)


Alternatives to KML

• Scalable Vector Graphics (SVG):
– XML based web standard for 2-D vector graphics from W3C.
– suitable format for GIS and mapping applications.
– While GML provides a means of storing and transporting 

geographical features, SVG makes it possible to display these 
features as vector maps. 

– The graphics description capabilities of SVG are much 
stronger than those of KML, but SVG is only 2-D and does not 
incorporate concepts for navigation.



Alternatives to KML
As a summary:
• KML does a bit of everything. It defines geographic objects, their 

styling and their graphical representation. 
• There are some overlaps between GML and KML in the way in 

which the basic geometrical objects are represented. 
– KML contains styles, but is not a styling language in the 

manner of SLD/SE. 
• In SVG, the canvas is the 2-D surface of a computer screen, 

whereas KML provides the mechanisms for visualising
geographical features on a map or a globe. 

• GML and KML are also logical partners, like GML and SVG. 
• SLD/SE provides styling rules to transform data encoded in GML 

into a target visualisation language (e.g. KML or SVG). 



Specifications of KML

Hierarchy of KML elements



Specifications of KML

• A Placemark is one of the most commonly used features in 
Google Maps. It marks a position on the Earth's surface.

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">
<Document>

<Placemark>
<name> 3.4 </name>
<Point>

<coordinates>-110.46,44.47,0</coordinates>
</Point>

</Placemark>
</Document>
</kml>

http://www.opengis.net/kml/2.2


Specifications of KML



Specifications of KML

var points = [ new GLatLng(43.28,-80.07), 
new GLatLng(43.51,-79.95),
new GLatLng(43.69,-79.80),
new GLatLng(43.76,-79.59), 
new GLatLng(43.83,-79.17),
new GLatLng(43.26,-80.15), 
new GLatLng(43.19,-79.98), 
new GLatLng(43.25,-79.67), 
new GLatLng(43.10,-79.46), 
new GLatLng(43.20,-79.23), 
new GLatLng(43.20,-78.99), 
new GLatLng(43.24,-78.82)]; 

map.addOverlay(new GPolyline(points)); 

Polyline code.





Specifications of KML

• A polygon feature is generated using a series of points data.



Specifications of KML

var states = xmlDoc.documentElement.getElementsByTagName("state"); 

var a = 0; a < states.length; a++) {
var label = states[a].getAttribute("name"); 
var colour = states[a].getAttribute("colour"); 
var points = states[a].getElementsByTagName("point"); 
var pts = []; 

for (var i = 0; i < points.length; i++) 
{ 

pts[i] = new GLatLng(parseFloat(points[i].getAttribute("lat")),     
parseFloat(points[i].getAttribute("lng"))); 

} 

var poly = new 
GPolygon(pts,"#000000",1,1,colour,0.5,{clickable:false}); 
polys.push(poly); 
labels.push(label); 
map.addOverlay(poly); 

Polygon code.





KML Applications

As GIS presentation:
• Displaying thematic maps,
• Overlaying GIS layers onto satellite images,
• GPS track log viewer
• Etc..



KML Applications

GIS layer overlay onto Satellite image.



KML Applications

AIDS estimated deaths (aged 0-49) in southern Africa in 2005.



KML Applications

Number of internet users in Europe, 2008.



KML Applications

Mobile phone subscribers in South East Asia in 2004.



KML Applications

The charts are scaled according to total population and the pie shows the 
age distribution for each country.



KML Applications

GDP per capital in European countries in 2006.



KML Applications

Choropleth map showing infant mortality rate in Africa, 2008.



KML Applications

Infant mortality rate visualized as a 3-D prism map.



KML Applications

CO2 emissions from each country in Europe, 2008.



KML Applications

Online GPS waypoint editor.





KML Applications

As a developer:
• Sign Up for the Google Maps API 

(http://code.google.com/apis/maps/signup.html)

ABQIAAAAqkUwGG0FmCnU50FrUUsgqBRJAlemGgWXUKHZMRzyYmbBIYRtQBR
qMQuNxoAqctDofpp3JmhouxuMgQ 

http://code.google.com/apis/maps/signup.html)


KML Applications

…
<script 
src=http://maps.google.com/maps?file=api&amp; 
v=2&amp; sensor=false&amp; 
key=ABQIAAAAqkUwGG0FmCnU50FrUUsgqBRJAlemGgWXUK
HZMRzyYmbBIYRtQBRqMQuNxoAqctDofpp3JmhouxuMgQ 
type="text/javascript">
</script> 
…

Embedded in HTML / PHP coding as Javascript.

http://maps.google.com/maps?file=api&amp;


UTM’s campus map



Level of Detail



Level of Detail

• Discrete, Continuous & View-Dependent LOD
• Simplification operators
• Terrain LOD



Fundamental concept of LOD

§ Simplify complex object.
§ Create LOD to reduce the rendering cost of small distant or 

unimportant geometry.



Discrete LOD

§ Discrete LOD
– Create multiple versions of every object during an offline 

process 
– At run-time chose the appropriate LOD

§ LOD Node in VRML
§ Disadvantages:

– View independent 
– Popping effect



Continuous LOD

§ Simplification process creates a data structure encoding a 
continuous spectrum of continuous LOD

– Progressive Mesh (Hoppe 1996).
§ Desired LOD is extracted from this data structure at run-

time.
§ Progressive Mesh LOD containing 150, 500, 1000 and 

13546 triangles.



View-Dependent LOD

§ Extends continuous LOD using view-dependent criteria to 
dynamically select the most appropriate LOD for the 
current view.



Simplification: Vertex Clustering



Simplification: Edge Collapse

Progressive Mesh stores a Mesh by a sequence of vertex splits!



Topology simplification



Components of a 3D Scene



Indexed Face Set 

Points:
0 0,0 0,0 0,0
1 1,0 0,0 0,0
2 1,0 1,0 0,0
3 0,0 1,0 0,0
4 0,0 0,0 1,0
5 1,0 0,0 1,0
6 1,0 1,0 1,0
7 0,0 1,0 1,0

Faces:
0 0 1 2 3
1 0 1 5 4
2 1 2 6 5
3 2 3 7 6
4 3 0 4 7
5 4 5 6 7

0 (0,0,0) 1 (1,0,0)

2 (1,1,0)

4 (0,0,1)

7 (0,1,1)

3 (0,1,0)

0 (0,0,0) 1 (1,0,0)

2 (1,1,0)

4 (0,0,1) 5 (1,0,1)

6 (1,1,1)

3 (0,1,0)

7 (0,1,1)



Scene Graph



Extrusion: from 2D to 2.5D



Texture (Alpha-channel)



Texture coordinates

• Indexed Face Set
– Coordinates (3D) are mapped to texture coordinates (2D)

Texturraum Parameterraum Modellraum

(x,y,z)(u,v)

(r,s)

Texturraum Parameterraum Modellraum

(x,y,z)(u,v)

(r,s)



Texture



Level of Detail: Building

100K triangles 20K triangles 5K triangles


